期刊文献+

关于图的点强全着色

On the Vertex Strong Total Coloring of Graphs
下载PDF
导出
摘要 图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当ν∈V(G),N[ν]中的元素着不同颜色,其中N[ν]={u|νu∈E(G)}∪{ν}。并且χνsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数。本文得到了一些特殊图的点强全色数χνsT(G),并提出猜想:对于简单图G,有k(G)≤χνsT(G)≤k(G)+1,这里k(G)是文中给出的一个新的参数。 A proper k-total coloring σ of graph G (V, E) is called a k-vertex strong total coloring of G (V, E) if and only if for ang v∈V(G), the elements in N[v] are colored with different colors, whereN N[v]={u|vu∈E(G)}∪{v}.; and χ^Tvs(G) =rain {k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G. We have obtained the vertex strong total chromatic unmber χ^Tvs(G) (G) of some special graphs and present a conjecture: For simple graph G, has k(G)≤χ^Tvs(G)≤k(G)+1, where k (G) is a new parameter of G (V, E) defined in this paper.
作者 刘景发
出处 《衡阳师范学院学报》 2006年第3期5-7,共3页 Journal of Hengyang Normal University
基金 湖南省教育厅科学基金资助项目(05C649) 衡阳师范学院青年骨干教师基金
关键词 点强全着色 点强全色数 graph vertex strong total coloring vertex strong total chromatic number
  • 相关文献

参考文献4

  • 1刘林忠,张忠辅.最大度不大于5的Halin-图的点强全染色(英文)[J].经济数学,2002,19(1):77-80. 被引量:10
  • 2Halin R.Studies on minimally n-connected graph.Combin.Math.and its Applications[M].Academic Press,London,1969.
  • 3Bond Y J A,Murty U S R.Graph theory with Applications[M].The Macmillan Press,London,1976.
  • 4Chartrand G,Linda L F.Graphs and Digraphs[M].Ind.edition Wadsworth Brooks/Cole,Monterey,CA,1986.

二级参考文献9

  • 1[1]Harary,F. , Conditional colorability in graphs,in Graphs and Application,Proc. First Colorado Symp.Graph Theory,John Wiley & Sons Inc. ,New York, 1985.
  • 2[2]Favaron,Odile, Hao Li and R. H. Schelp, Strong edge coloring of graphs, Discrete Mathematics, 159(1996),103-109.
  • 3[3]Burns A. C. , Vertex-distinguishing Edge-coloring, Ph. D. Dissertation, Memphis State University,1993.
  • 4[4]Chartrand, Gary, Linda Lesniak-Foster, Graphs and Digraphs, ind. edition Wadsworth Brooks/Cole,Monterey,CA(1986).
  • 5[5]Nelson,Roy and Robin J. Wilson,Graph Colorings,Pitman Research Notes in Mathematic Series,218.
  • 6[6]Bondy,J. A. and Murty,U. S. R. ,Graph theory applications,The Macmillan Press Ltd. , 1976.
  • 7[7]Halin,R. ,Stuties on minimal n-connected graph,Comb. Math. and Its Applications,Proc. conf. Oxford,1969.
  • 8[8]Zhang Zhongfu,Liu Linzhong,A note on the total chromatics Number of Halin-graph with △(G)≥4,Appl. Math. Lett , 11:5(1998) ,23-27.
  • 9[9]Zhang Zhongfu and Liu Linzhong, On the complete chromatic number of Halin Graphs, AcataMathematicae Applicatae Sinica, 13: 1 (1997), 102~ 106.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部