摘要
图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当ν∈V(G),N[ν]中的元素着不同颜色,其中N[ν]={u|νu∈E(G)}∪{ν}。并且χνsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数。本文得到了一些特殊图的点强全色数χνsT(G),并提出猜想:对于简单图G,有k(G)≤χνsT(G)≤k(G)+1,这里k(G)是文中给出的一个新的参数。
A proper k-total coloring σ of graph G (V, E) is called a k-vertex strong total coloring of G (V, E) if and only if for ang v∈V(G), the elements in N[v] are colored with different colors, whereN N[v]={u|vu∈E(G)}∪{v}.; and χ^Tvs(G) =rain {k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G. We have obtained the vertex strong total chromatic unmber χ^Tvs(G) (G) of some special graphs and present a conjecture: For simple graph G, has k(G)≤χ^Tvs(G)≤k(G)+1, where k (G) is a new parameter of G (V, E) defined in this paper.
出处
《衡阳师范学院学报》
2006年第3期5-7,共3页
Journal of Hengyang Normal University
基金
湖南省教育厅科学基金资助项目(05C649)
衡阳师范学院青年骨干教师基金
关键词
图
点强全着色
点强全色数
graph
vertex strong total coloring
vertex strong total chromatic number