期刊文献+

有向复杂网络的Poisson模型 被引量:8

Poisson model of directed complex networks
下载PDF
导出
摘要 考虑了节点到达过程是Poisson过程的有向复杂网络.本文研究了这类网络的瞬态度分布和稳态平均度分布.利用Poisson过程理论对这类网络进行了分析,获得了度分布的解析表达式.结果表明,虽然这类网络的稳态平均入度和稳态平均出度分布与节点的到达过程无关,但瞬态入度和出度分布依赖于节点的到达过程. The BA model is a famous model for the undirected networks. Unfortunately, the analysis by Barabási et al on the model is incorrect. The goal of the present paper is to propose Poisson growth directed networks in which the nodes arrival process is a Poisson process. The Poisson directed model describes real networks better than the BA model, for example, WWW network and phone call network. The degree distribution and stationary average degree distribution of the model are investigated. The Poisson process theory is introduced, that allows us to predict the dynamics of individual nodes in the system, and to calculate analytically the connectivity distribution. Although the stationary average indegree and out-degree distributions of the model are independent of the arrival process of nodes, the transient in-degree and out-degree distributions are dependent on the arrival process.
作者 郭进利
出处 《上海理工大学学报》 EI CAS 北大核心 2006年第3期227-232,共6页 Journal of University of Shanghai For Science and Technology
基金 上海市重点学科建设资助项目(T0502) 上海市教委自然科学基金资助项目(05EZ35)
关键词 复杂网络 BA模型 G模型 有向网络 度分布 complex networks BA model G model directed networks degree distribution
  • 相关文献

参考文献18

  • 1LI L,ALDERSON D,TANAKA R,et al.Towards a theory of scale-free graphs:definition,properties,and implications (extended version)[EB/OL].http:// arXiv:cond-mat/0501169,2005.
  • 2BARABASI A L,ALBERT R.Emergence of scalling in random networks[J].Science,1999,286:509-512.
  • 3ALBERT R,BARABASI A L.Statistical mechanics of complex networks[J].Rev Mod Phys,2002,74:47-97.
  • 4KRAPIVSKY P L,REDNER S.Organization of growing random networks[J].Phys Rev E,2001,63:066123.
  • 5PRICE D J de S.Networks of scientific paper[J].Science,1965,149:510-515.
  • 6NEWMAN M E J.The Structure and function of complex networks[J].SIAM Review,2003,45:167-256.
  • 7PRICE D J de S.A general theory of bibliometric and other cumulative advantage processes[J].J Amer Soc Inform Sci,1976,27:292-306.
  • 8BORNHOLDT S,EBEL H.World wide web scaling exponent from Simon's 1955 model[J].Phys Rev E,2001,64:035104.
  • 9SINOM H A.On a class of skew distribution functions[J].Biometrika,1955,42:425-440.
  • 10BARABASI A L,ALBERT R,JEONG H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187.

二级参考文献14

  • 1史定华,郭进利,刘黎明.ON THE SPH-DISTRIBUTION CLASS[J].Acta Mathematica Scientia,2005,25(2):201-214. 被引量:4
  • 2Barabási A-L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 3Barabási A-L,Albert R,Jeong H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187.
  • 4Albert R,Barabási A-L.Statistical mechanics of complex networks[J].Rev Mod Phys,2002,74:47-97.
  • 5Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45:167-256.
  • 6Dorogovtsev S N,Mendes J F F.Mendes[J].Evolution of Networks,Advances in Physics,2002,519:107-174.
  • 7Price D J,de S.Networks of scientific papers[J].Science,1965,149:510-515.
  • 8Ross S M.Stochastic Processes[M].John Wiley & Sons,inc,1983,20-81.
  • 9Fronczak A,Fronczak P,Holyst J A.Mean-field theory for clustering coefficients in Barabási-A lbert networks[J].Physical Review E,2003,68(4):046126-046132.
  • 10Guo J L,Bai Y Q.A note on mean-field theory for scale-free random networks,dynamics of continuous[J].Discrete and Impulsive Systems,Ser B,2006,13(3):520-528.

共引文献260

同被引文献86

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部