期刊文献+

基于NSGA-Ⅱ的风光互补独立供电系统多目标优化 被引量:38

STAND-ALONE HYBRID WIND/PV POWER SYSTEMS USING THE NSGA-Ⅱ
下载PDF
导出
摘要 在风光互补独立供电系统的设计中,系统的优化配置是一个重要步骤。风光资源、发电、储能和负载之间有复杂的匹配关系。风光互补独立供电系统的优化配置可看作一个多目标优化问题,两个相互冲突的目标是极大化供电可靠性和极小化成本,供电可靠性指标负载缺电率LPSP需经仿真运行得到。优化算法采用精英非支配解排序遗传算法(NSGA-Ⅱ),决策变量不仅有传统算法中的光伏电池和蓄电池的容量,还增加了风力发电机的类型和容量以及光伏电池的倾角。经传统算法及ε-约束法验证表明,NSGA-Ⅱ得出的非支配解前沿面就是Pareto前沿面。 In the design of stand-alone hybrid wind/photovoltaic power systems, the optimal sizing is an important and challenging task. The coordination among renewable energy, resources, generators, energy storages and loads is very complicated. The sizing of stand-alone hybrid wind/PV power systems can be considered as a multi-objective optimization problem involving two conflicting objectives: maximization of power reliability and minimization of cost. The Loss of Power Supply Probability (LPSP), which is the index of power reliability, is obtained by simulation. The Pareto-optimal solutions were found using the elitist non-dominated sorting GA (NSGA-Ⅱ),and was validated by solving the multi-objective problem with a traditional method, which also belongs to the s-constraint method. The decision variables are not only the size of solar PV panels and the capacity of batteries in traditional methods, but also the type and size of wind turbine generators (WTGs) and the tilt angle of PV panels.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2006年第6期593-598,共6页 Acta Energiae Solaris Sinica
基金 国家级星火计划项目(2004EA105003)
关键词 可再生能源 独立供电系统 容量配置 多目标优化 演化算法 renewable energy stand-alone power systems sizing multi-objective optimization evolutionary algorithms
  • 相关文献

参考文献13

  • 1Habib M A,Said S A M,El-Hadidy M A,et al.Optimization procedure of hybrid photovoltaic wind energy system[J].Energy,1999,24(11):919-929.
  • 2Borowy Bogdan S,Salameh Ziyad M.Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J].IEEE Transaction on Energy Conversion,1996,11 (2):367-375.
  • 3Willis H L,Scott W G.Distributed power generation:planning and evaluation[M].New York:Marcel Dekker,2000.
  • 4Ai B,Yang H,Shen H,Liao X.Computer-aided design of PV/wind hybrid system[J].Renewable Energy,2003,28:1491-1512.
  • 5Gen Mitsuo,Cheng Runwei.Genetic algorithms and engineering optimization[M].New York:Wiley-Interscience,1999.
  • 6Deb K.Multi-objective optimization using evolutionary algorithms[M].Chichester,England:John Wiley & Sons,2001.
  • 7Duffie John A,Beckman William A.Solar engineering of thermal processes[M].New York:Wiley,1991.
  • 8Manwell J F,Rogers A,Hayman G,et al.Hybrid2:ahybrid system simulation model theory manual[R].National Renewable Energy Laboratory,1995.
  • 9Lasnier France,Ang Tony Gan.Photovoltaic engineering handbook[M].Bristol,England:A.Hilger,c1990.
  • 10Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal.A fast multiobjective genetic algorithms:NSGA-Ⅱ[J].IEEE Transaction on Evolutionary Computation,2002,6 (2):182-197.

同被引文献363

引证文献38

二级引证文献652

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部