摘要
论文首先给出了信号变化度的概念,并证明了信号变化度的一个性质:互相独立的一组源信号的线性混合信号的变化度介于源信号中的最小变化度和最大变化度之间。然后,利用矩阵广义特征值理论,给出了一种基于线性混合信号盲分离算法。该算法计算简单,具有闭解形式;并能分离源信号中既有亚高斯信号又有超高斯信号的情况。仿真结果表明该算法是有效的,并具有很好的分离性能。
In this paper,a measure of signal variability is defined.Given any set of statistically uncorrelated source signals,it is proved that a linear mixture of those signals has the following property:the signal variability of any signal mixture is greater than(or equal to) minimal that of its component source signals,and is less than(or equal to) maximal that of its component source signals.Based on the property,an algorithm for linear blind source separation is proposed by using generalized eigenvalue theory.The proposed algorithm has a closed-form and less computations,And the presented algorithm can separate signal mixtures in which each mixture is a linear combination of source signals with supergaussian,subgaussian,and gaussian probability density functions.Simulation results illustrate the efficiency and the good performance of the algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2006年第18期76-78,共3页
Computer Engineering and Applications
基金
国家自然科学基金资助项目(编号:60325310
60274006)
中国博士后科学基金资助项目(编号:2003034062)
广东省自然科学基金博士科研启动基金资助项目(编号:04300015)
广东省教育厅自然科学研究项目
广州市科技计划资助项目(编号:2004J1-C0323)
广州市属高校科技计划资助项目(编号:2055)
关键词
信号变化度
盲信号分离
广义特征值
signal variability,blind sources separation,generalized eigenvalue problem