期刊文献+

一种基于网格距离的资源调度 被引量:1

Improving Scheduling for Grid Resource Management
下载PDF
导出
摘要 在网格资源调度中,当任务选择与自己距离较近、可用带宽较大的资源时,调度体现更好的特性。文章就距离、可用带宽并结合资源的使用费用,提出了网格距离的概念,实现网格资源选择中对上述因素的约束。定义了网格资源和应用的模型,在该模型上完成网格距离的计算,提出了资源选择算法。仿真实验表明,调度在通信开销、稳定性、任务完成时间以及任务执行的失败率等方面都得到了改善,同时促进整个网格系统资源交易的吞吐量。 Purpose. There exist already many algorithms on scheduling for grid resource management. The full paper begins with a discussion of a number of these algorithms mentioned in Refs. 1 through 5. We present our scheduling algorithm which we hope is better than those discussed. In the full paper, we explain our proposed algorithm in detail ; here we just give a briefing. Our scheduling algorithm is based on the concept of "grid distance" proposed by us. The explanation in the full paper centers around three topics: (1) resource selection; (2) grid distance; it is worth mentioning that, in the mathematical expression for grid distance, there are three coefficients α,β and x and that α+β+x= 1; we can take physical distance, bandwidth and cost into optimal consideration by selecting suitable values of α, β and x; (3) scheduling algorithm based on grid distance. Finally we performed simulations to compare the performance of our algorithm with that of the None Minimisation algorithm of Ref. 5 by Buyya and Giddy. For our algorithm, we used three different combinations of parameters α,β and x; (1) α= 1, β and x= 0 ;(2) α=0.5, β=0.3, x=0.2; (3) α=0.7,β=0.2,x=0.1. The average costs of our algorithm are 4 400 G $ (combination 1), 3 980 G $ (combination 2) and 4 370 G $ (combination 3) respectively. The average cost for None Minimisation algorithm is 4570G $. Thus the second combination of parameters (α =0.5, β=0. 3,x=0. 2) is the best.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2006年第3期393-396,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60373078) 甘肃省科技攻关项目(2GS047-A52-002-04)资助
关键词 网格距离 资源模型 应用模型 资源调度 算法 grid-distance, grid resource management, scheduling
  • 相关文献

参考文献6

  • 1Czajkowski K, Foster I, et al. A Resource Management Architecture for Metacomputing Systems. Proc IPPS/SPDP Workshop, Springer-Verlag LNCS 1459, 1998, 62-82
  • 2Wolski R, Plank J, Bryan R, Brevik J. G-Commerce:Market Formulations Controlling Resource Allocation on the Computational Grid. Proceedings of Parallel and Distributed Processing Symposium, San Francisco(CA), 2001, 8-23
  • 3Zhang Weizhe, Fang Binxing, He Hui, et al. Muhisite Resource Selection and Scheduling Algorithm on Computational Grid. Proceedings of Parallel and Distributed Processing Symposium-Workshop, Santa Fe, New Mexico, 2004, 105-117
  • 4Li Chunlin, Li Layuan. Competitive Proportional Resource Allocation Policy for Computational Grid. Future Generation Computer Systems, 2004, 20(6): 1041-1054
  • 5Buyya R, Giddy J, Abramson D. An Evaluation of Economy-Based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications. Proceedings of the Second Workshop on Active Middleware Services,Kluwer Academic Press, Pittsburgh, USA, 2000, 82-92
  • 6刘敏,李忠诚,石晶林,马建.IPv6网络中基于优先级的可用带宽测量方法[J].计算机研究与发展,2004,41(8):1361-1367. 被引量:6

二级参考文献9

  • 1S Deering, R Hinden. Intemet Protocol, version 6 (IPv6)Specification. Internet Network Working Group, RFC 2460.http:∥www. ietf. org/rfc/rfc2460. txt? number = 2460, 1998
  • 2UCB/LBNL/VINT Network Simulator-ns, Version 2. http:∥www. isi. edu/nsnam/ns, 2003
  • 3B Melander, M Bjorkman, P Gunningberg. A new end-to-end probing and analysis method for estimating bandwidth bottlenecks.IEEE GLOBECOM 2000, San Francisco, USA, 2000
  • 4C Dovrolis, P Ramanathan, D Moore. What do packet dispersion techniques measure? IEEE INFOCOM 2001, Anchorage, USA,2001
  • 5M Jain, C Dovrolis. End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput.IEEE/ACM Trans on Networking(TON), 2003, 11(4): 537~549
  • 6G Jin, G Yang, B Crowley, et al. Network characterization service (NCS) . The 10th IEEE Symp on High Performance Distributed Computing, San Francisco, 2001
  • 7R L Carter, M E Crovella. Measuring bottleneck link speed in packet-switched networks. Performance Evaluation, 1996, 27(8): 297~318
  • 8V Jacobson. Congestion avoidance and control. ACM SIGCOMM 1988, California, USA, 1988
  • 9S Keshav. A control-theoretic approach to flow control. ACM SIGCOMM 1991, Zurich, Switzerland, 1991

共引文献5

同被引文献7

  • 1马满福,吴健,胡正国,陈丁剑.网格计算资源管理中的信誉度模型[J].计算机应用,2005,25(1):61-64. 被引量:24
  • 2Sandholm T, Suri S.Optimal clearing of supply/demand curves [C]. Vancouver, Canada: Proceedings of the 13th Annual Intemational Symposium on Algorithms and Computation(ISAAC),2002.
  • 3RFC-0112 Bundle Repository. OGSi alliance [EB/OL] .http:// bundles.osgi.org,2006.
  • 4Sandholm T. Approaches to winner determination in combinatorial auctions [J].Decision Support Systems,2000,28(1): 165-176.
  • 5Dmitri Dolgov,Edmund Durfee.Computationally efficient combinatorial auctions for resource allocation in weakly-coupled MDPs[C].Michigan:Ann Arbor, Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems,2005,657-664.
  • 6Wurman P R,Wellman M P.Equilibrium prices in bundle auctions [C].Gul F, Stachetti E. Proc AAAI-99 Workshop on Artificial Intelligence for Electronic Commerce.USA:Springer,1999,56-61.
  • 7Michael R Werder. Pricing in the service-oriented it world[D]. Germany:University of Zurich,2004.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部