摘要
提供了一个在高斯光束几何反射模型下的反射式横向位移光纤传感器接收光强的数值计算方法,可在计算机上对其特性进行设计计算,为该传感器的优化设计提供了一个必要工具.对用62.5/125多模光纤组成的并列反射式横向位移光纤传感器的计算分析结果表明,接收光纤端面处的反射光斑半径在180μm附近时有最大的接收光强和最佳信噪比;反射光斑半径在180~600μm时接收光强对反射条边缘的横向位移或横向振动的动态范围、线性关系和信噪比都较佳;接收光强对反射条横向位移的分布宽度主要取决于反射条的宽度和接收光纤的芯径.
In order to research the design method and reference for reflection type optical fiber sensor, a onedimensional integration formula derived from the reflection of Gaussian beam and experimental results has been given. The formula could be used to calculate the characteristics of reflection type optical fiber sensor rapidly on the personal computer for the purpose to design the sensor optimistically. The calculating results with the formula above for the reflection type optical fiber sensor made from 62.5/125 multimode optical fiber, have shown that the sensor would has the maximum receiving power and optimal signal to noise ratio when the reflection beam width on the receiving fiber face is 180 μm, the widest variation range and the best linearity relation for the receiving power vs. reflector's transverse displacement could been reached with the beam width on the receiving fiber face is among 180-600 μm, the distribution width of receiving power was decided by the reflector's width and the core diameter of receiving fiber.
出处
《三峡大学学报(自然科学版)》
CAS
2006年第3期286-288,共3页
Journal of China Three Gorges University:Natural Sciences
基金
广东省自然科学基金项目(034067)
关键词
光反射
接收光强
高斯光束
光纤传感器
optical reflection
receiving power
Gaussian beam
optical fiber sensor