期刊文献+

基于神经网络集成的经济预测模型 被引量:10

Economic forecasting model based on neural network ensemble
下载PDF
导出
摘要 针对单个BP神经网络用于经济预测存在的不足,提出了一种新的更有效的经济预测模型——神经网络集成。神经网络集成通过训练多个神经网络并将各网络输出进行合成,能够显著提高网络的泛化能力。以广东省江门市的经济数据为例,采用Bagging算法训练了五个BP神经网络,构建了一个神经网络集成的GDP预测模型,并运用MATLAB7.0语言程序实现。预测结果令人满意,优于单个神经网络预测方法。实证表明,神经网络集成用于经济预测是有效可行的,同时在一定程度上克服了单个神经网络的缺陷。 In view of the weaknesses of simplex BP neural network for economic forecasting, a new and more effective economic forecasting model called neural network ensemble (NNE) is developed in this paper. NNE can improve the generalization ability through training multiple neural networks and combining their results. According to the economic data of Jiangmen, Guangdong, five neural networks have been trained by adopting Bagging to build a NNE, which is realized by MATLAB 7.0 and employed to forecast GDP. Theforecasting results are satisfactory, proving that NNE is superior to simplex neural network. Meanwhile, NNE turns out-to be valid and feasible for economic forecasting and can overcome the shortcomings of simplex BP neural network to some degree.
作者 朱帮助 林健
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2006年第B06期257-259,共3页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(70471074) 广东省科技攻关基金资助项目(2004B36001051)
关键词 神经网络集成 BP神经网络 BAGGING 经济预测 neural network ensemble BP neural network Bagging economic forecasting
  • 相关文献

参考文献6

  • 1肖健华.区域经济发展智能预测方法[J].经济数学,2005,22(1):57-63. 被引量:5
  • 2Hansen L K, Salamon P.Neural Network Ensembles [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 3周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 4Perrone M P, Cooper L N. When networks disagree: Ensemble method for neural networks [A]. In: Mammone R J ed. Artificial Neural Networks for Speech and Vision[C].New York: Chapman & Hall,1993:126-142.
  • 5Opitz D, Shavlik J. Actively searching for an effective neural network ensemble [J]. Connection Science, 1996. 8(3-4): 337-353.
  • 6韩超,车永才,王继波.改进的BP神经网络煤炭需求预测模型[J].辽宁工程技术大学学报(自然科学版),2005,24(z1):290-292. 被引量:18

二级参考文献10

  • 1[4]郭嗣宗、陈刚.信息科学的软计算方法[M].沈阳:东北大学出版社,2001.148-169.
  • 2Muller, K. R.,S.Mika,G.Ratsch, et al.,An Introduction to Kernel-Based Learning Algorithms,IEEE Trans.on Neural Networks, 12:2(2001), 181-201.
  • 3Vapnik, V.,The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
  • 4Burges, C.J.C.,A Tutorial on Support Vector Machines for Patten Recognition, Data Mining and Knowledge Discovery, 2:2(1998), 121-167.
  • 5Smola, A.,B.Scholkopf,A Tutorial on Support Vector Regression, Neuro COLT TR NC-TR-98-030. Royal Holioway College University of London, UK, 1998.
  • 6Campbell,C.,Kernel Methods: A Survey of Current Techniques, http://citeseer. nj. nec. com/campbel 100kernel, htmi.
  • 7Mercer. J.,Functions of Positive and Negative Type and Their Connection with the Theory of Integral Equations, Philos. Trans. Roy. Soc. London, A 209:415-446,1909.
  • 8王端武,王浩,张烁,李德波.我国煤炭需求预测 全国煤炭市场调查研究之二[J].中国煤炭,1999,25(4):9-16. 被引量:11
  • 9崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3
  • 10周志华,何佳洲,陈世福.神经网络国际研究动向——2000年国际神经网络联合大会评述[J].模式识别与人工智能,2000,13(4):415-418. 被引量:8

共引文献263

同被引文献74

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部