期刊文献+

基于系数相关性的多尺度Kalman滤波器组的GPS共视观测数据算法 被引量:1

Multiscale Kalman filters algorithm for GPS common-view observation data based on correlation structure of discrete wavelet coefficients
下载PDF
导出
摘要 运用基于小波系数相关性的多尺度Kalman滤波器组算法处理GPS共视观测数据。在假设GPS共视钟差数据具有1/f分形特性的条件下,用基于小波变换的算法估计GPS钟差数据的自相似参数H。当0<H<1时,GPS共视钟差数据是一个具有1/f分形特性的高斯、零均值、非静态随机过程。在此条件下,在多尺度Kalman滤波器参数估计过程中讨论小波系数列的相关性。并在考虑相关性的基础上进行钟差数据的估计。分别对单通道和多通道共视数据进行处理,并与C ircular T数据进行了比对。结果表明本文方法是可行的、有效的。 The GPS common-view observation data were processed using the multiscale Kalman filters algorithm based on a correlative structure of the discrete wavelet coefficients. Supposing the GPS common-view observation data has the 1/f fractal characteristic, the algorithm of wavelet transform is used to estimate the self-similar Hurst parameter H of GPS clock difference data. When 0 〈 H 〈 1, the 1/f fractal characteristic of the GPS clock difference data is a Gaussian Zero-mean and non-stationary stochastic process. Thus, the discrete wavelet coefficients can be discussed in the process of estimating the multi-scale Kalman coefficients, and further the discrete clock difference can be estimated. The single-channel and multi-channel common-view observation data were processed respectively. Comparisons were made between the results obtained and the Circular T data. Simulation results show that the algorithm discussed in this paper is both feasible and effective.
作者 偶晓娟 周渭
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第4期599-603,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60571060)
关键词 通信技术 多尺度Kalman滤波器组 1/f分形特性 相关性结构 分形增量 communication multiscale Kalman filters 1/f fractal characteristic correlation structure fractal increment
  • 相关文献

参考文献9

  • 1曹坤勇,于盛林,黄晓晴.基于小波变换的1/f类分形信号的参数估计[J].吉林大学学报(工学版),2003,33(4):100-104. 被引量:3
  • 2Tewfik A H,Kim M.Correlation structure of the discrete wavelet coefficients of fractional brownian motion[J].IEEE Transactions on Information Theory,1992,38(2):904-909.
  • 3Hirchoren Gustavo A,D'Attellis Carlos E.Estimation of fractal signals using wavelets and filter banks[J].IEEE Transactions on Signal Processing,1998,46 (6):1624-1630.
  • 4Flandrin P.Wavelet analysis and synthesis of multiresolution stochastic processes[J].IEEE Transactions Information on Theory,1992,38(2):910-917.
  • 5Aplan L M,Kuo C J.Fractal estimation from noisy measurements via discrete ractional gaussian noise(DFGN) and the Haar basis[R].University of Southern California,Los Angeles,SIPI 212,1992.
  • 6Mallat.信号处理的小波导引[M].北京:机械工业出版社,2003.
  • 7Chen B S,Lin C W.Multiscale winer filter for the restoration of fractal signals:Wavelet bank approach[J].IEEE Transactions on Signal Processing,1994,42(11):2972-2982.
  • 8Ou Xiao-juan,Zhou wei.Study on GPS common-view observation data with multiscale kalman filter algorithm[C]//IEEE UFFC Joint 50th Anniversary Conference,Canada,2004.
  • 9Zhao Juan.Multiscale Kalman filtering of fractal signalsusing wavelate transform[C] //Proceedings of WAA Second International Conference,Hong Kong,China,2001:304-313.

二级参考文献10

  • 1MANDELBROT B, VAN NESS J. Fractional brownian motions, fractional noises and applications[ J ]. SIAM Rev, 1968,10 : 422 - 423.
  • 2FLANDRIN P. On the spectrum of fractional Brownian motion[J]. IEEE Trans. Inform. Theory,1989,35:197- 199.
  • 3GACHE N,FLANDRIN P,GARREAU D. Fractal dimension estimators for fretional Brownlan motions[Z]. Proc IEEE Int Conf. on Acoustics Speech and Signal Processing, 1991:3557- 3560.
  • 4WORNELL G W, OPPENHEIM A V. Estimation of fractal signals from noisy measurements using wavelets[J]. IEEE Trans. Signal Proeessina, 1992,40(3) :611 - 623.
  • 5KAPLAN L M, KUO C J. Fractsl estimation from noisy measurements via discrete ractional Gaussian noise(DFGN) and the Hasr basis[Z]. Univ of Southern California, Los Angeles, Tech Rep. SIPI 212,July 1992.
  • 6CORSINI G,SALETTI R. Design of a digital 1/f noise simulator[Z]. Proc Noise Physical Syst. and 1/f Noise,University de Montreal, 1987: 82 - 86.
  • 7ELI Shusterman. Analysis and synthesis of 1/f processes via shannon wavdets[J]. IEEE Transaction on Signal Processing,1998,46:1698 - 1702.
  • 8PYKE R. One dimensional brownian motion[R]. MAT335H1 - Chaos,Fractals,and Dynamics Aprial,2002.
  • 9FLANDRIN P,GACHE N. Fractal dimension estimators for fractional brownian motiona[J ]. International Conference on Acoustics,Speech and Signal Processing, 1991,5:3557 - 3560.
  • 10曹坤勇,于盛林,李光.基于正交小波变换合成拟1/f过程[J].吉林大学学报(工学版),2003,33(2):69-74. 被引量:5

共引文献2

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部