期刊文献+

基于SVM学习方法的分析 被引量:1

Analysis of Studying Method Based on SVM
下载PDF
导出
摘要 介绍了增量学习算法、序列最小优化算法、加权支持向量机算法等几种应用于大型数据库,在加快训练速度、降低分类错误率等方面有改进的SVM流行算法.在分析各种算法优缺点的基础上,提出了在线性样本训练、超大规模样本下满足KKT条件的算法是SVM算法的发展方向的观点. Several kinds of improved support vector machine(SVM) algorithm such as increment learning algorithm, SMO, weighted support vector machine algorithm applied to large scale databases are introduced, to speed up the rate of exercise and to lower the radio of classification mistakes etc are analyzed. Based on the advantages and disadvantages of algorithm, it is pointed out that the development orientation of SVM is to satisfy the algorithm with KKT and with online sample exercise and super large scale databases.
出处 《烟台师范学院学报(自然科学版)》 2006年第2期105-108,共4页 Yantai Teachers University journal(Natural Science Edition)
关键词 支持向量机 增量学习算法 序列最小优化算法 加权支持向量机算法 support vector machine increment learning algorithm SMO weighted support vector machine algorithm
  • 相关文献

参考文献10

二级参考文献60

  • 1Vapnik V. Nature of Statistical Learning Theory. John Wiley and Sons ,Inc. ,New York ,in preparation.
  • 2Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition. Bell Laboratories, Lucent Technologies. 1997.
  • 3Keerthi S S,et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design.
  • 4Keerthi S S, et al. A Fast iterative Nearest Point Algorithm for Support Vector Machine Classifier Design.
  • 5Platt J. Sequential minimal optimization: A fastalgorithm for training support vector machines. Advances in Kernel MethodsSupport Vector learning. Cambridge, MA: MIT Press,1999. 185-208.
  • 6VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 8Osuna E,Freund R,Girosi F.Suppport vector machines:Training and application[R].Cambridge:Massachusetts Institute of Technology, 1997.
  • 9Francis E H Tay, Cao L J. Modified support vector machines in financial time wries forecasting [J]. Neurocomputing,2002,48:847- 861.
  • 10Francis E H ray, Cao L J. Application of support vector machines in financial time wries forecasting [J].Omega,2001,29:309-317.

共引文献176

同被引文献6

  • 1潘石柱,殳伟群,王令群.基于支持向量机和核主成分分析的车牌字符识别[J].电子科技,2006,19(10):59-61. 被引量:2
  • 2Cristianini N,Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods.BeiJing:Publishing House of Electronics Industry,2004.
  • 3Brown M P,Grundy W N,Grundy W N,et al.Knowledge-based analysis of microarray gene expression data using support vector machines.Proc Natl Acad Sci USA,2000;97(1):262-267.
  • 4Golub.Acute Lymphoblastic Leukemia.http://www.broadinstitute.org/publications/broad957s,2008.
  • 5Bian Zhaoqi,Zhang Xuegong.Pattern recognition.BeiJing:Tsinghua University Press,2000:77-80.
  • 6黄聪.微阵列技术在基因表达分析中的应用[J].中国煤炭工业医学杂志,2010,13(3):475-476. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部