期刊文献+

平移不变与系数放大小波变换图像消噪方法 被引量:1

Image denoising method based on translation invarian and coefficient magnification
下载PDF
导出
摘要 平移不变量小波变换在图像降噪中的应用,主要通过阈值方法来有效的降低图像的噪声,但它的结果中会出现诸如伪吉布斯现象之类的情况。为消除此类情况,将平移不变量小波变换引入到小波图像降噪中,并结合阈值方法进行消噪处理,同时在阈值处理前对分解后的高频与低频系数进行适当放大,从而形成平移不变量与系数放大法的有机结合。经仿真实验,证明这种方法比一般的图像消噪方法有很大改进,特别是图像的均方误差有很大的降低,提高了信噪比。 In this paper a method for wavelet transform based on translation invariant in the image denoising area is researched. Threshold method could effectively eliminate the noise. However, some cases such as Gibbs phenomena would appear in its result. In order to eliminate this phenomena, a new approach for wavelet transform based on translation invariant is presented in the image denoising. Moreover, the threshold method is combined to eliminate the image noise. Before dealing with threshold, the coefficients of high-frequency and low-frequency are magnified properly after decomposing. Results of experiment show that the given algorithm is much better than the common deniosing methods. The RMSE of signal has been phenomenally decreased while the SNR has been increased.
作者 李杰 丁宣浩
出处 《桂林电子工业学院学报》 2006年第3期177-180,共4页 Journal of Guilin Institute of Electronic Technology
基金 国家自然科学基金项目(10361003) 广西自然科学基金项目(0542046)
关键词 小波变换 平移不变量 阈值操作 系数放大 图像降噪 wavelet transform translation invariant hreshold method coefficient magnify image denoising
  • 相关文献

参考文献4

  • 1杨龙平,丁宣浩,孙建明.一种新的基于小波变换的图像消噪方法[J].云南民族大学学报(自然科学版),2005,14(1):71-74. 被引量:11
  • 2陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社,2003.
  • 3DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans. on Image Processing, 2004.
  • 4ESLAMI R, RADHA H. Translation- invariant contourlettransform and it's application to image denoising [J]. IEEE Trans. on Image Processing, 2004.

二级参考文献12

  • 1彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 2Paitas I, Venetsanopoulos A- N. Nonlinear digital filters: Principles and applications[M]. Boston: Kluwer Academic, 1990.
  • 3Wtukey J. Exploratory data analysis[M]. New York: Addison Wesley, 1997.
  • 4German D, Reynolds G. Constrained restoration and the recovery of discontinulties[J]. IEEE Trans Pattern Analysis and Machine Intelligence , 1992,14 ( 3 ) : 367 - 383.
  • 5Wong E Q, Algazi V R. Image enhancement using linear diffusion and an improved gradient map estimate[A]. In: Proceeding of 1999 IEEE International Conference on Image Processing[C]. Kobe Japan , 1999. 154- 158.
  • 6You Yuli, Kaveh D. Fourth- order partial differential equations for noise removal[J]. IEEE Trans Image Processing,2000,9( 10):1723- 1730.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425- 455.
  • 8Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Trans Image Processing ,1998,7(1):82-90.
  • 9German D, Reynolds G. Constrained restoration and the recovery of discontinuities[J]. IEEE. Trans. Pattern Analysis and Machine Intelligence , 1992,14 ( 3 ) : 367 - 383.
  • 10You Yuli, Kaveh D. Fourth- order partial differential equations for noise removal[J]. IEEE Trans, Image Processing,2000,9( 10):1723- 1730.

共引文献37

同被引文献11

  • 1李杰,丁宣浩.改进的小波自适应阈值图像消噪[J].桂林电子科技大学学报,2006,26(5):351-354. 被引量:7
  • 2OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[ J]. Nature, 1996, 381 : 607 - 609.
  • 3DONOHO D L, FLESIA A G. Can recent innovations in harmonic analysis ' Explain' key findings in natural image statistics [ J]. Network: Computation in Neural Systems, 2001,12(3) : 371 -393.
  • 4CANDES E J. Ridgelet: Theory and applications[ D]. Stanford, CA: Stanford University, Department of Statistics, 1998.
  • 5CANDES E J, DONOHO D L. Curvelets[ D]. Stanford, CA: Stanford University, Department of Statistics, 1999,.
  • 6EMNANUEL C, LAURENT D, DONOHO D, et al. Fast discrete troweler transforms [ J]. Multiscale Modeling and Simulation, 2006, 5(3) :861 -899.
  • 7CAND' ES E J, DEMANET L. Curvelets and fast wave equation solvers[D]. California, CA: California Institute of Technology, 2005.
  • 8CANDES E J, DONOHO D L. New tight frames of curvelets and optimal representations of objects with C2 singularities[ J]. Communications on Pure and Applied Mathematics, 2004, 57(2) : 219 - 266.
  • 9COIFMAN R R, DONOHO D L. Translation-invariant de-noising [C]// Wavelets in Statistics, LNS 103, New York: Springer-Vetlag, 1995:125 - 150.
  • 10杨华莉,王瑶.基于FDCT的图像消噪算法[J].西南民族大学学报(自然科学版),2007,33(4):897-900. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部