期刊文献+

用最大等级法测定幂律 被引量:2

Power-law Measure by Max-ranking Method
下载PDF
导出
摘要 幂律是无标度网络的基础,但它的测定不只是统计节点度的频数那么简单,这种做法可能导致错误的结论,譬如本文图2(A)(B),此外频数法的拟合误差不容忽视。本文设计了一种高精度的方法——最大等级法,并证明它是判定整数型大样本幂律随机量的充要条件。我们以平均相对误差为主要评价指标,在相同条件下比较了多种方法,发现最大等级法的平均相对误差最低,只有0.11%,而频数法却有5.51%. Power-law is basis of scale-free networks. Its measurement is so subtle that an imprecise method leads to improper results. For instance, there is an obvious error in the fig2 (A) and (B) in this paper; error of frequency-ranking cannot be ignored. In this paper, we design a new accurate method named max-ranking to measure power-law. A sufficient and necessary condition of power-law estimation on occasion of huge integral samples is proved. At last, we compare the Average- Relative-Error by different methods, and found that by the ARE of max-ranking is 0. 11%. Meanwhile, by the ARE of frequency-ranking is 5.51%.
出处 《系统工程》 CSCD 北大核心 2006年第5期122-126,共5页 Systems Engineering
基金 国家统计局重点资助项目(LX2005-20)
关键词 复杂网络 幂律 频数法 最大等级法 平均相对误差 Complex Network Power-law Frequency-ranking Max-Ranking Average-Relative-Error
  • 相关文献

参考文献19

  • 1Albert R,Barabási A L.Statistical mechanics of complex networks[J].Review of Modern Physics,2002,74:47~91.
  • 2Adamic L A,Huberman B A.Power-law distribution of the world wide web[J].Science,2000,287:2115.
  • 3Adamic L A.Zipf,Power-laws,and Pareto-a ranking tutorial[Z].online version,2002,http://www.hpl.hp.com/research/idl/papers/ranking.
  • 4Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509~512.
  • 5Barabási A L,Bonabeau E.Scale-free networks[J].Scientific American,2003,288:60~69.
  • 6Broder A,Kumar R,Maghoul F,Raghavan P,Rajagopalan S,Stata R,Tomkins A,Wiener J.Graph structure in the web[J].Computer Networks,2000,33:309~320.
  • 7Faloutsos M,Faloutsos P,Faloutsos C.On power-law relationships of the Internet topology[J].Comput.Commun.Rev.,1999,29:251~263.
  • 8Hill B.A simple general approach to inference about the tail of a distribution[J].The Annals of Statistics,1975,3(5):1163~1174.
  • 9胡海波,王林.幂律分布研究简史[Z].preprint,2005,http://www.qiji.cn/eprint/abs/2747.html.
  • 10Jeong H,Mason S,Barabási A L,Oltvai Z N.Lethality and centrality in protein networks[J].Nature,2001,411:41~42.

同被引文献30

  • 1刘夫云,祁国宁,杨青海.基于复杂网络的零部件用量预测方法[J].机械工程学报,2006,42(6):1-6. 被引量:11
  • 2李慧霸,王凤芹,译.图论简明教程[M].北京:清华大学出版社,2005.
  • 3DAMIE L A A,HUBERMAN B A.Power-law distribution of the world wide web[J].Science,2000,287(5461):2115-2132.
  • 4WATTSAND D J,STROGATZ S H.Collective dynamics of small-world networks[J].Nature,1998,393(6684):440-442.
  • 5AIELLO W,CHUNG E,LU L.A random graph model for massive graphs[J].Sympy on the Theory of Computing,2000 (32):1-10.
  • 6EBEL H,MIELSEH L.Scale-free topology of email networks[J].Circuits and Systems Magazine,IEEE 66(035103),2001,18(2):1687-1694.
  • 7REDNER S.How popular is your paper an empirical study of the citation distribution[J].Eur.phys.J.B,1998(4):131-134.
  • 8ERDO S P,RE NYI A.On the evolution of random graphs[J].Science,1959 (5):17-60.
  • 9ALBERT R,JEONG H,BARABA SI A-L.Diameter of the world wide web[J].Nature,1999(401):130-131.
  • 10NEWMAN M E J.The structure of scientific collaboration networks[J].Proe.Natl.Aead.Se1.USA,2001(98):404-409.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部