期刊文献+

一种基于神经网络的机器人轨迹跟踪控制方法 被引量:1

A Robot Trajectory-tracking Control Method Based on Neural Network
下载PDF
导出
摘要 对电驱动刚性机器人操作手轨迹跟踪控制问题进行了系统研究.利用径向基函数(RBF)神经网络的逼近学习功能,提出了一类神经网络控制策略.并用非线性系统LYAPUNOV数学理论进行了稳定性分析.所提出的控制方案力求保证控制系统具有较强的稳定性和鲁棒性,得到了机器人操作手轨迹跟踪误差的渐近稳定性.在进行严格理论证明的同时,结合计算机数值仿真实验验证所提出的控制方法是可行和有效的. In this thesis, the trajectory-tracking control problem ot Rigid-hnk Electrically-drtven is studied systemically. Using the learning ability of RBF NN,a NN controllers is proposed. Stability analysis is put up based on Lyapunov nonlinear system theory. The controller in this paper do its best to guarantee the rather strong robustness and stability,asymptotic stability of trajectory tracking errors is obtained. The computer numerous simulations experiment and the theory demonstration also validate that the controller in this dissertation are valid and right.
作者 王言芹
出处 《甘肃联合大学学报(自然科学版)》 2006年第3期25-28,共4页 Journal of Gansu Lianhe University :Natural Sciences
关键词 电驱动刚性机器人 轨迹跟踪 神经网络 渐近稳定性 Rigid-link Electrically-driven robots trajectory tracking neural network asymptotic stability
  • 相关文献

参考文献7

  • 1[1]S Fuk,R C Gonzalez,S G Lee.Robotics:Control,Sensing,Vision and Intelligence[M].MCGraw Hill,1987.
  • 2[2]T J Tarn,A K Bejczy,X Yun,et al.Effect of motor dynamics on nenlinear feedback robot arm control[J].IEEE Tran.on Robot Autom,1991,7(1):114-122.
  • 3[3]C Y Su,Y Stepanenko.Hybrid adaptive/robust motion control of rigid-link electrically-driven robot manipulator[J].IEEE Trans on Robot Autom,1995,11(3):426-432.
  • 4[4]C Y Su,Y Stepanenko.On the robust control of manipulator including actuator dynamics[J].J Robot Syst,1996,13(1):1-10.
  • 5[5]I Kanellakopoulos,P V Kokotovic,A S Morse.Systematic design of adaptive controller for feedback linearizable systems[J].IEEE Trans on Automat.Control,36(1191):1241-1253.
  • 6[6]D Taylor.Composite control of direct-drive robots[J].Proc.IEEE Conf.Decision and control,1989.1670-1675.
  • 7[7]C M Kwan,F L Lewis,D M Dawson.Robust neural-network electrically driven robots[J].IEEE Trans.on Neural Network,1998,9(4):581-588.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部