期刊文献+

NbH还原制备新型电容器阳极材料低价铌氧化物

Preparation of niobium suboxide for new electrolytic capacitor anode by NbH reduction
下载PDF
导出
摘要 采用NbH还原Nb2O5工艺制备低价铌氧化物粉末,经压制成型、阳极烧结、阳极氧化工艺,获得电性能优良的低价铌氧化物电解电容器阳极。采用X射线衍射、扫描电镜、成分分析及电容器阳极电性能检测等方法,对比研究高能球磨与玛瑙研磨2种不同混料工艺。研究结果表明:高能球磨工艺制备的低价铌氧化物有明显片式化现象,粒度小,比容可达107.00 mF.V.g-1,但球磨过程中引入的杂质难以在后续的洗涤过程中彻底除去,导致阳极漏电流大。用正交试验法及方差分析对玛瑙研磨工艺进行优化,得到制备低价铌氧化物最佳条件是:焙烧温度为1 000℃,焙烧时间为40 min,NbH用量与理论量之比为1.1,所制得的产物杂质含量低,比容为69.50mF.V.g-1,损耗为11.25%,漏电流为1.8×10-4A.F-1.V-1,其电性能指标高于FTa16—300电容器钽粉国家标准(GB/T 3136—1995)所规定的值。 The niobium suboxide powder was prepared by NbH reduction Nb2O5 procedure, pressing to the mould, sintering and oxidation of the niobium suboxide anode, and niobium suboxide for capacitor anode with good electrical property was obtained. The high energy ball milling procedure and agate grind procedure were compared by means of X-ray diffraction, scanning electron microscopy, component analysis and electrical property test for capacitor anode. The results show that the particle size of production of high energy ball milling procedure is very fine, inclined to slice, the specific capacity is 107.00mF·V·g^-1, and the leakage current is high because of the impurity content. The agate grind procedure is optimized by orthogonal experiments and analysis of variance. The optimal processing conditions are as follows: roasting temperature at 1 000℃, roasting time for 40 min, the ratio of NbH dosage to theoretic dosage at 1.1. The specific capacity of niobium suboxide of preparation by agate grind procedure is 69. 50mF·V·g^-1, the loss is 11.25%, the leakage current is 1.8×10^-4A·F^-1·V^-1 , and the electrical properties are better than that of the national standard (GB/T 3136-1995) of FTa16-300 tantalum powder for capacitor.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期461-466,共6页 Journal of Central South University:Science and Technology
关键词 低价铌氧化物 NbH 电解电容器阳极 电性能 niobium suboxide NbH electrolytic capacitor anode electrical property
  • 相关文献

参考文献14

  • 1吕义生,冷时铭,刘子文.中国钽电容器工业的进展[J].稀有金属材料与工程,1998,27(1):15-20. 被引量:5
  • 2钟晖,李荐,戴艳阳,钟海云.铌电解电容器最新研究发展动态[J].稀有金属,2002,26(2):139-142. 被引量:10
  • 3Boiko B T,Kopach V R,Melentjev S M,et al.Comparison of the degradation modes in sandwich structures including amorphous oxides of niobium and tantalum[J].Thin Solid Films,1993,229(2):207-215.
  • 4Fedorenko A I,Starikov V V,Pozdeev Yu L,et al.Layer systems on the base of nitrogen-doped tantalum with enhanced stability[J].Crystal Research and Technology,1997,32(6):843-848.
  • 5QIU Yong-jian,Smyth D,Kimmel J.The stabilization of niobium solid electrolyte capacitors[J].Active and Passive Electronic Components,2002,25 (2):201 -209.
  • 6Pozdeev Y.Reliability comparison of tantalum and niobium solid electrolytic capacitors[J].Quality and Reliability Engineering International,1998,14(2):79-82.
  • 7FifeJ A.Nitrided niobium powders and niobium electrolytic capacitors with reduced leakage current in niobium anode:WO 9957739[P].1999-11-11.
  • 8Werder D J,Kola R R.Microstructure of Ta2O5 films grown by the anodization of TaNx[J].Thin Solid Films,1998,323:6-9.
  • 9Kimmel J L,Kitchell R W,Fife J A.Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides for capacitor anodes:USA,US 6373685 B1[P].2002-04-16.
  • 10Fife J A.Partial reduction of niobium pentoxide for its use as a capacitor anode:USA,US 6416730 B1[P].2002-07-09.

二级参考文献5

  • 1董秀春(译).-[J].钽铌工业进展,1998,3:28-28.
  • 2赵海田(译).-[J].钽铌工业进展,2000,2:17-17.
  • 3赵海田.-[J].钽铌工业进展,2000,2:32-32.
  • 4高福兰,稀有金属材料与工程,1985年,5期,19页
  • 5石宝林,稀有金属材料与工程,1984年,2期,22页

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部