期刊文献+

利用模型管理框架求解多目标优化问题 被引量:1

Solving multi-objective optimization problem using model management framework
下载PDF
导出
摘要 为了提高演化算法的效率,减少优化时间,提出一种多目标模型管理框架。利用该模型管理框架可以在整个寻优区域内建立比较精确的目标及约束的近似模型,从而避免了大量耗时的高精度分析计算。将该多目标模型管理框架与单纯形-多目标粒子群算法(SM-MOPSO)相结合,对某轻型飞机齿轮箱减速器进行多目标优化设计,使高精确分析计算的次数减少88%。该多目标模型管理框架及SM-MOPSO算法可用于求解大型、复杂的工程优化问题。 In order to improve the efficiency of evolutionary algorithm and reduce the optimization time, a multi-objective model management framework was proposed. By using the multi-objective model management framework, accurate approximation models of the entire searching space can be constructed, and evolutionary algorithm will avoid a great number of time-consuming highfidelity analyses. The multi-objective model management framework is integrated with a new hybrid evolutionary algorithm, simplex method-multiple objective particle swarm optimization (SM-MOSPO), to solve multi-objective optimization design of speed reducer gearbox. Not only a good Pareto set is obtained efficiently, but also the time of high-fidelity analyses is reduced by 88%. In complex engineering optimization designs, the multi-objective model management framework and SM-MOSPO algorithm should be recommended.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期562-566,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(10377015)
关键词 模型管理框架 单纯形法 多目标粒子群优化算法 齿轮箱减速器 model management framework simplex method multiple objective particle swarm optimization, speed reducer gearbox
  • 相关文献

参考文献16

  • 1Dennis J E,Torczon V.Managing approximation models in optimization[C]//Hussaini M Y.Proceedings of 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Design.Philadelphia,1996:330 -347.
  • 2Trosset M W,Torczon V.Numerical optimization using computer experiments[R].Virginia:NASA Langley Research Center,1997.
  • 3Booker A J,Dennis J E.A rigorous framework for optimization of expensive functions by surrogates[J].Structure Optimization,1999,17(1):1-13.
  • 4Simpson T W,Peplinski J D.Metamodels for computer-based engineering design:survey and recommendations[J].Engineering with Computers,2001,17(2):129-150.
  • 5Shyy W,Tucker P K.Response surface and neural network techniques for rocket engine injector optimization[J].Journal of Propulsion and Power,2001,17(2):391-401.
  • 6Simpson T W,Mauery T M.Comparison of response surface and Kriging models for multidiscilinary design optimization[C]//Technical Report 98-4758.St.Louis:AIAA,1998:381-391.
  • 7Nair P B,Keane A J,Shimpi R P.Combining approximation concepts with genetic algorithm-based structural optimization procedures[C]//Ong Y S.Technical Report 98-1912.St.Louis:AIAA,1998:1741-1751.
  • 8Jin Y,Olhofer M,Sendhoff B.A framework for evolutionary optimization with approximate fitness functions[J].IEEE Transactions on Evolutionary Computation,2002,6(5):481-491.
  • 9Yang Y S,Jang B S.A framework for managing approximation models in place of expensive simulations in optimization[C]//Swnsea.Proceedings of 2nd ASMO UK/ISSMO Conference on Engineering Design Optimization.Wales,2000:249-256.
  • 10Jang B S,Yang Y S,Yeun Y S.Managing approximation models in multi-objective optimization[J].Structural and Multidisciplinary Optimization,2002,24(2):141-156.

二级参考文献5

  • 1[1]Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory. In: Proceedings of Sixth Symposium on Micro Machine and Human Science, Piscataway, NJ: IEEE Service Center, 1995, 39~43
  • 2[2]Coello C A C, Lechunga M S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii: IEEE Press, 2002
  • 3[3]Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 2000, 8(2): 173~195
  • 4[4]王凌.智能优化计算及其应用.北京:清华大学出版社,2001
  • 5[6]Gerhard Venter, Jaroslaw Sobieszczanski-Sobieski. Particle Swarm Optimization. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado: AIAA 2002- 1235, 2002

共引文献9

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部