期刊文献+

不可约M-矩阵的最小特征值的估计 被引量:1

The Estimation of the Smallest Eigenvalue of the lrreducible M-matrix
下载PDF
导出
摘要 讨论了不可约M-矩阵A的最小特征值l(A)的估计问题。得到了,若A,B∈Rn×n是不可约M-矩阵。记B-1=[bij],A-1=[aij],则l(A oB-1)<2 m ax1 i nakkbkk,且存在正对角矩阵D1=d iag(d1,d2,∧,dn),与D2=d iag(d1,d2,∧,dn),使得m in1 i ndim in1 i ndi l(A)m ax1 i ndi1 m i a nxdi. The smal1lest eigenvalue l(A) of irreducible M-matrix A= (αij)is discussed in this paper. It is shown that l (AoB^-1 )〈2 maxαkk^bkk 1≤i≤n if A, B ∈ R^n×n are irreducible M-matrix where B^-1 = [^-bij], and that there exists positive diagonal matrix D1=ding(^-d1,d2,∧,dn)and D2=ding(^-d1,^-d,∧,^-dn)such that mindi 1≤i≤n min 1≤i≤n ^-di,≤l(A)≤maxdi 1≤i≤n max^-di 1≤i≤n.
机构地区 云南大学数学系
出处 《延安大学学报(自然科学版)》 2006年第2期1-3,9,共4页 Journal of Yan'an University:Natural Science Edition
基金 云南省教育厅科研基金(03Z169A)
关键词 M-矩阵 最小特征值 HADAMARD积 M-matrix the smallest eigenvalue Hadamard product.
  • 相关文献

参考文献4

  • 1SONG Yong-zhong. On an inequality for the Hadamard product of an M-matrix and its inverse[J], linear Algebra and its Application. 2000,305:99-105.
  • 2BERMAN A,PLEMMONS R J. Nonngative matrices in the Mathematical Sciences [M]. Newyork:Academic Press, 1979.
  • 3HOM R A,JOHNSON C R. Matrix Analysis[M]. Cambridge University Press, 1985.
  • 4楼嫏嬛,吴保卫,任林源.关于M-矩阵的最小特征值[J].陕西师范大学学报(自然科学版),2004,32(1):8-10. 被引量:3

二级参考文献2

  • 1陈景良,陈向晖.特殊矩阵[M]清华大学出版社,2001.
  • 2程云鹏.矩阵论[M]西北工业大学出版社,1989.

共引文献2

同被引文献7

  • 1逄明贤.矩阵谱论[M].长春:吉林大学出版社,1990.
  • 2M. Fiedler, T. L. Markham. An inequallty for the the Hadamard product of M- matrices and Invense M-matrices, Linear Algebra Appl [J]:1988, 101: 1-8.
  • 3X. R. Yong, Proof of a conjecture of Fiedler and Marlcham, Linear Algebra Appl [J]. 2000(320): 167 - 171.
  • 4Gregery A. Johnson. A Generallzation of N - Matrices, Linear Algebra Appl [J]. 1982(48) :201 - 217.
  • 5Berman A, Plemmons R J. Nonnegative matrices in the Mathematleal Science [M], Academic Press, Newyork: 1979.
  • 6R. A. Horn, C. R. Johnson. Matrix Analysis [M], Cambridge University Press, Cambridge, 198.5.
  • 7Song YongZhong. On an equality for the Hadamard product of M - matrices and Inverse M - matrices, Linear Algebra Appl [J]. 2000, 305: 99-105.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部