期刊文献+

一个基于计算机视觉的监控系统算法设计 被引量:1

The Design for a Monitoring System Based on Computer Vision
下载PDF
导出
摘要 提出了一种新的基于计算机视觉的双目识别算法。该算法利用象素点的深度信息,采用统计的方法给场景建模,通过时间滤波克服光照渐变,依靠深度算法特性克服光照突变,并采用图像深度块融合技术,减少数据量与计算量,快速识别。在DSP平台上实现了该算法。实测证明,该算法与传统方法相比,具有较低的计算复杂度和较低的误检率,在视频监控应用中取得了很好的效果。 A new recognizing and tracing algorithm based on two-eyes computer vision is presented. This algorithm makes use of the depth information of each pixel, then it adopts the statistics method to modeling the scene and overcomes the gradual light change by time filter. It can also overcome the sudden light change by the characteristic of the depth algorithm. It can reduce data and computation by the technique of fusing the depth blocks, then recognize the scene quickly. It is realized the algorithm on the DSP platform. The simulation shows that this algorithm has a lower complexity and lower miss rate. It makes a good effort in the practice of monitoring.
作者 侯东良
出处 《上海第二工业大学学报》 2006年第2期112-116,共5页 Journal of Shanghai Polytechnic University
关键词 计算机视觉 深度信息 自适应 DSP 监控 computer vision depth information DSP monitoring
  • 相关文献

参考文献9

  • 1Ude A,Riley M.Prediction of body configurations and appearance for model-based estimation of articulated human motions[C]//IEEE SMC' 99 Conference Proceeding,1999(2):687-691.
  • 2Ricquebourg Y,Bouthemy P.Real-time tracking of moving persons by exploiting spatio-temppral image slices[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22(8):797-808.
  • 3Tsap L V,Goldof D B,Sarkar S.Nonrigid motion analysis based on dynamic refinement of finite element modelsp[J].IEEE Transcation on Pattern Analysis and Machine Intelligence,2000,22(5):256-543.
  • 4Tsap L V,Goldof D B,Sarkar S.Nonrigid motion analysis based on dynamic refinement of finite element modelsp[J].IEEE Transcation on Pattern Analysis and Machine Intelligence,2000,22(5):256-543.
  • 5Wren C,Azarbayejani A,Darrell T,et al.Real-time tracking of the human body[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 6Ridder C,Munkelt O,Kirchner H.Adaptive background estimation and foreground detection using kalman-filtering[C] // Proc.Int'l Conf.Recent Advances in Mechatronics,ICRAM' 95,1995:193-199.
  • 7Fujiyoshi H,Lipton A J.Real-time human motion analysis by image skeletonization[C] // Proc.of the Workshop on Application of Computer Vision,October 1998.
  • 8Sebastien Roy,Ingemar J Cox.A maximum-flow formulation of the N-camera stereo correspondence Problem[C]//Int.Conf.on Computer Vision (ICCV'98),Bombay:India,January 1998:92-499.
  • 9Cox I J,Hingorani S,Maggs,B M,et al.A maximum likelihood stereo algorithm[J].Computer Vision and Image Understanding,1996,63(3):542-567.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部