期刊文献+

进化优化小生境遗传算法控制参数的研究 被引量:9

Research on Evolving Control Parameters in Niche Genetic Algorithm
下载PDF
导出
摘要 小生境遗传算法与遗传算法相比,在求解多峰函数等最优化问题上具有显著的优势,但是小生境距离参数的确定缺乏理论依据,限制了小生境遗传算法的应用。该文提出了一种求解小生境之间距离参数的新方法——基于遗传算法进化优化小生境距离参数。根据多峰目标函数的具体情况,应用遗传算法随机寻优得到若干个最优值,由这些最优值的最小欧氏距离指导小生境距离参数的取值。依据此方法确定小生境之间的距离参数,应用小生境遗传算法成功求解了Shubert多峰函数的所有全局最优值以及六峰值驼背数Back Function的所有局部极小值。 Niche genetic algorithm is superior to genetic in multiple hump function optimization. However, there is lack of theory to determine the parameter of niche distance, so the algorithm's application is limited. This paper presents a new approach to determine the niche distance parameter, which is based on genetic algorithm. According to the information of multiple hump object function, genetic algorithm is used to seek several global optimums, whose Euclidean distances are calculated. The niche distance is determined by the minimal Euclidean distance. This approach is successfully used in Shubert function optimization and six-hump camel back function optimization.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第13期206-208,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60475002)
关键词 遗传算法 小生境 多峰函数最优化 Genetic algorithm Niche Multiple hump function optimization
  • 相关文献

参考文献4

  • 1Shreni B,Klahenbuhl L.Fitness Sharing and Niching Methods Revisited[J].IEEE Trans.on Evolutionary Computation,1988,2(3):97-106.
  • 2Gan J,Warwick K.Dynamic Niche Clustering:A Fuzzy Variable Radius Niching Technique for Multimodal Optimization in Gas[C].Proc.of IEEE Int.Conf.on Evolutionary Computation,2001:215.
  • 3郭观七,喻寿益.探索曲面结构的小生境遗传算法[J].系统工程学报,2003,18(3):211-217. 被引量:5
  • 4Michalewicz Z.Genetic Algorithms + Data Structure =Evolutionary Programs(2nd Edition)[M].Berlin,Heidelberg:Springer-Verlag,1994.

二级参考文献11

  • 1Holland J H. Adaptation in Nature and Artificial Systems[M]. Ann Arbor, Mh University of Michigan Press, 1975.
  • 2De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive System[D]. Ann Arbor: University of Michigan, 1975.
  • 3Grefenstette J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics,1986, 16(1): 122--128.
  • 4Davis L. Adapting operator probabilities in genetic algorithms[ A]. In Schaffer J D ed. Proceedings of the Third International Conference on Genetic Algorithms[C]. San Mateo, CA: Morgan Kaufmann, 1989. 61---69.
  • 5Srinivas M, Patnaik L M. Adapting probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems,Man and Cybernetics, 1994, 24(4): 656----667.
  • 6Yang R, Douglas I. Simple genetic algorithm with local tuning: Efficient global optimizing technique[J]. Journal of Optimization Theory and Applications, 1998, 98(2) : 449---465.
  • 7Yen J, Liao J C, Lee B, et al. A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method[J].IEEE Transactions on Systems, Man and Cybernetics, 1994, 28(2) : 173--191.
  • 8Liang K H, Yao X, Newton C. Combining landscape approximation and local search in global optimization[A]. In Proceedings of the 1999 Congress on Evolutionary Computation[C]. New York: IEEE Press, 1999. 1514--1520.
  • 9Jelasity M, Dombi T. GAS, a concept on modeling species in genetic algorithms[J]. Artificial Intelligence, 1998, 99:1--19.
  • 10Back T. Evolutionary Algorithms in Theory and Practice[M]. New York: Oxford University Press, 1996. 140--141.

共引文献4

同被引文献60

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部