期刊文献+

π旋转LDPC码与高阶调制相结合的性能分析

Analysed the Performance of Combination for the π Rotation Low-density Parity-check Codes and Multilevel Modulation
下载PDF
导出
摘要 低密度奇偶校验(LDPC)码具有译码简单、抗衰落性能好的特点,成为未来宽带移动通信的信道编码研究热点之一。一类π旋转LDPC码利用双对角线校验矩阵克服了以往LDPC码编码复杂度高的缺点;同时由于LDPC码的随机性,码长越长,其等效交织效果越明显。为了提高信道频带利用率,本文利用准规则π旋转LDPC码设计了一种不采用交织的高阶编码调制方案。 Low-density parity-check (LDPC) codes may become one of encoding schemes in the future mobile, because of their simple decoding and well characteristic of repelling to decline. Each of n rotation low-density parity-check codes which use of dual-diagonal matrix can overcome the high encoding complexity of usual LDPC codes. The effect of interleaving gets more distinct along with longer length of codes, because of the randomness ofn rotation matrix. To improve the spectrum usage, we take advantage of n rotation low-density parity-check codes designs one without bit-interleaved coded modulation in this paper.
出处 《光子技术》 2006年第2期97-101,共5页 Photon Technology
基金 国家自然科学基金项目(60432040)
关键词 π旋转 奇偶校验矩阵 LDPC码 高阶调制 π rotation parity-check matrix LDPC codes multilevel modulation
  • 相关文献

参考文献2

二级参考文献7

  • 1G. Ungerboeck,"Channel coding with multilevel/phase signals, IEEE Trans. Inform. Theory,vol. IT-28,Jan. 1982,p. 55-67.
  • 2C. Berrou,A. Glavieux and P. Thitimajshima,"Near Shannon limit error-correcting coding and decoding: Turbo-codes, in proc. ICC' 93,May,993,p. 1064-1070.
  • 3Gallager R G.Low density parity check codes[J].Ph.D.thesis,Massachusetts Institute of Technology,Cambridge,MA,1960.
  • 4David MacKay J C.Good error-correcting codesbased on very sparse matrices[J].IEEE Tran.on Information Theory,1999,45(2):399-431.
  • 5Richardson T,Urbanke R.Efficient encoding of lowdensity parity-check codes[J].IEEE Transactions on Information Theory,2001,47(2):638-656.
  • 6Echard R,Chang S C.The-rotation low-density parity check codes[S].in Proc.GLOBECOM 2001,2001:980-984.
  • 7吴伟陵.通向信道编码定理的Turbo码及其性能分析[J].电子学报,1998,26(7):35-40. 被引量:33

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部