摘要
环指有单位元的结合环而一般环指有或没有单位元的结合环.证明了如果一般环R满足条件存在自然数n使得对任意x,y∈R均有(xy-yx)″=0那么R的幂零元集合等于其素根.并证明了2-素的替换环是右拟-duo环.分别改进和推广了文献[10,5]中的相应结果.
It is proved that if R is a general ring for which there exists a positive integer n such that (xy-yx)^n=0 for all x,y∈R thenNil(R)=P(R) and that a 2-primal exchange ring is a right quasi-duo ring, which improve and extend some known results in the literatures [10],[5]respectively.
出处
《临沂师范学院学报》
2006年第3期5-7,共3页
Journal of Linyi Teachers' College
关键词
2-素环
替换环
右拟-duo环
2-Primal rings
Exchange rings
Right quasi-duo rings