摘要
为了解决多奇异数重子两步拓扑重建效率低的问题,利用人工神经网络以较高的效率来一步完成对奇异粒子的鉴别。就高维参数空间中BP神经网络对训练样本高统计量要求的问题,进行了蒙特卡洛法研究,所得结论支持用人工神经网络鉴别多奇异数重子。
In order to solve the problem of low efficiency in two-step topological reconstruction of the multi-strange baryons it is planed to apply the artificial neural network to the identification of the baryons in one step with higher efficiency. A Monte Carlo study is carried out on the problem of demanding high statistics of the training sample by BP neural network in a high dimensional parameter space. The results support the application of the neural network to the identification of multi-strange baryons.
出处
《长江大学学报(自科版)(上旬)》
CAS
2006年第2期15-17,共3页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金
国家自然科学基金项目(10375025)
湖北省教育厅重点项目(2003A002)。
关键词
高能碰撞
人工神经网络
多奇异数重子
鉴别效率
high energy collisions
artificial neural network
multi-strange baryon
identification efficiency