期刊文献+

神经网络在手写体字符识别中的应用研究

The Study of Neural Networks Applied to Handwritten Character Recognition
下载PDF
导出
摘要 总结了神经网络被用于手写体字符识别分类中的应用情况,分析了所采用的反向传播神经网络、径向基函数神经网络、自组织神经网络等网络模型及其最新的应用情况,详细介绍了神经网络集成的一些方法.并根据目前的研究现状,指出用于分类器设计的神经网络集成方法和理论研究是未来的重要研究课题. The Neural Network (NN) is extensively applied to the recognition of handwritten character, which has strong nonlinear mapping and parallel computing ability. In this paper, the BP NN, RBF NN, Kohonen NN, etc, are investigated their newest developments of application, which are used to design the classifiers of handwritten character. Some methods of combining multiple classifiers are also checked. Finally, it is presented that the implementation methods and theoretical analysis of NN ensembles are the issues valuable for future exploration in this area.
出处 《中原工学院学报》 CAS 2006年第3期17-21,共5页 Journal of Zhongyuan University of Technology
基金 全国优秀博士学位论文作者专项资金资助项目(200250) 河南省自然科学基金项目(411012400)
关键词 手写体字符识别 神经网络 神经网络集成 handwritten character recognition Neural Network Neural Network ensemble
  • 相关文献

参考文献15

  • 1Garris M D,Wilson C L,Blue J L. Neural Network-Based Systems for Handprint OCR Applications[J]. IEEE Trans. Image Processing,1998, 7(8) :1097-1112.
  • 2Ⅱ-Seok Oh, Ching Y Suen. A Class-modular Feedforward Neural Network for Handwriting Recognition[J]. pattern recognition, 2002,35(2) :229-244.
  • 3Mitiche A, Lebidoff M. Pattern Classification by a Condensed Neural network[J]. Neural Networks,2001,14(5):575-580.
  • 4Song Wang,Xiaoyan Zhu. Multiple Experts Recognition System Based on Neural Network[C]//. Austrila Vienna:Proc. of international Conference on Pattern Recognition, 1996:545-548.
  • 5朱小燕,史一凡,马少平.手写体字符识别研究[J].模式识别与人工智能,2000,13(2):174-180. 被引量:28
  • 6石繁槐,童学锋.SVM在小字符集脱机手写体汉字识别中的应用研究[J].计算机工程,2002,28(6):154-155. 被引量:9
  • 7Dong J X, Adam Krzyzak, Suen C Y. An Improved Handwritten Chinese Character Recognition System Using Support Vector Machine[J]. Pattern Recognition Letters,2005,26(12) : 1849- 1856.
  • 8Poisson E, Gaudin CV, Lallican PM. Multi-Modular Architecture Based on Convolutional Neural Networks for Online Handwritten Character Recognition[C]//. Proc. of the 9th international conference on neural information processing (ICO-NIP02), 2002,5 :2444 - 2448.
  • 9Rahman A F R, Howells W G J, Fairhurst M C. A Multiexpert Framework for Character Recognition: A Novel Application of Clifford Networks[J]. IEEE Trans. On neural networks, 2001,12(1):101-111.
  • 10Faruq A AI-Omari, Omar AI-Jarrah. Handwritten Indian Numerals Recognition System Using Probabilistic Neural Networks[J]. Advanced Engineering Informatics, 2004,18 (1) : 9- 16.

二级参考文献28

  • 1郝红卫,戴汝为.人机结合的集成方法及其在字符识别中的应用[J].模式识别与人工智能,1996,9(1):10-20. 被引量:14
  • 2马少平,夏莹,朱小燕.基于模糊方向线素特征的手写体汉字识别[J].清华大学学报(自然科学版),1997,37(3):42-45. 被引量:37
  • 3L.K. Hansen, P. Salamon. Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(10): 993~1001.
  • 4P. Sollich, A. Krogh. Learning with ensembles: How over-fitting can be useful. In: D. Touretzky, M. Mozer, M. Hasselmo, eds.Advances in Neural Information Processing Systems, Vol 8.Cambridge, MA: MIT Press, 1996. 190~196.
  • 5L. Breiman. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 6Y. Freund, R. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Int'l Conf. Machine Learning.Bari, Italy: Morgan Kaufmann, 1996.
  • 7A. Krogh, J. Vedelsby. Neural network ensembles, cross validation, and active learning. In: G. Tesauro, D. S.Touretzky, T. K. Leen, eds. Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT Press, 1995. 231~238.
  • 8T. Dietterich, G. Bakin. Solving multiclass learning problems via error-correcting output codes. Journal of AI Research, 1995, 2,263~ 286.
  • 9N. C. Oza, K. Tumer. Dimensionality reduction through classifier ensembles. NASA Ames Research Center, Tech. Rep.:NASA-ARC- IC-1999-126, 1999.
  • 10N. C. Oza, K. Tumer. Input decimation ensembles:Decorrelation through dimensionality reduction. In: J. Kittler, F.Roli, eds. Multiple Classifier Systems. Second InternationalWorkshop (MCS 2001), LNCS 2096. Berlin: Springer, 2001.238~ 247.

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部