期刊文献+

HML系统在商店偏好决策模型中的应用研究

The Study on Applying Hybrid Machine Learning into Store Choice Preference
下载PDF
导出
摘要 对混合式机器学习系统(HML)进行了全面系统的介绍,并将其运用于服装消费商店偏好决策行为的研究中。采用上海统计局家庭调查网络,对300户家庭进行抽样分析后发现,服装消费商店偏好的主要影响因素是地区、季节、丈夫和妻子的学历、职业以及子女性别。在此基础上,将HML分析所得的结论与传统的研究方法和结果进行了系统比较:从方法上来看,因为属性变量包含间断变量和连续变量两种,因此传统统计分析要运用两种不同的检测方法对影响因素的相关性作出判断,结果需要经过统计学分析,才能得到结论;而HML分析结果比较直观和简单,便于理解。 Hybrid Machine Learning (HML) is the latest applying in the field of intelligent iformation process. It combines the induced learning based - on decision - making tree with the blocking neural network. And it provides a useful intelligent knowledge - based data mining technique. Its core arithmetic is ID3 and FTART. The article introduced the principals of hybrid machine learning firstly, and then applied it into analyzing store choice preference and their influencing factors systematically. Finally, the author compared the results from HML with those from the traditional statistic methods. The conclusion is that HML is more friendly and easily to be understood than the traditional methods.
作者 沈蕾
出处 《郑州航空工业管理学院学报》 2006年第3期79-85,共7页 Journal of Zhengzhou University of Aeronautics
关键词 混合式机器学习系统 服装消费商店偏好 影响因素 家庭 hybrid machine learning store choice preference influencing factor family
  • 相关文献

参考文献10

  • 1Roby Roy Dhlakia. Going shopping: key determinantes of shopping behaviors [ M ]. Oxford Express, 1999.
  • 2Jenkins, Clyde elbert. The profile analysis of parent -child interaction in families'purchasing decisions: a cross- cultural study [ J ]. Feb 1982,3732.
  • 3Beulter, Business prove shopping with small children is possible[ J ]. Lincoln Star, 1987, ( 1 ):9.
  • 4Mead M. Culture and commitment : A study of the generation gap[ M ]. Garden City, NY : Doubleday, 1999.
  • 5郑之开,张广凡,邵惠鹤.数据采掘与知识发现:回顾和展望[J].信息与控制,1999,28(5):357-365. 被引量:32
  • 6Buchanan G B, Feigenbaum E A. Dendral and Meta -Dendral. Their Applications Dimension [ J ]. Artificial Intelligence, 1978,11.
  • 7Pokprny D. Knowledge acquisition by the GUHA method[J]. Int. J. Policy Anal. Blnform. System, Vol. 4,1980,379 - 399.
  • 8Langley P. Neches, R. , Neves, D. , and Anzai, Y. A Domaen - Independent Framework for Learning Procedures [ J ]. Int. J. Policy Anal. Inform. Systems, Vol. 4, 1980,163 - 198.
  • 9陈世福 陈兆乾.人工智能与知识工程[M].南京:南京大学出版社,1999..
  • 10Cohen P R, Feigenbaum E(eds. ). The Handbook of Artificial Intelligence [ M ]. col. Ⅲ, see. ⅩⅣ ( written by T. Dietterich), 1992.

二级参考文献1

  • 1Ronen Feldman,Haym Hirsh. Exploiting Background Information in Knowledge Discovery from Text[J] 1997,Journal of Intelligent Information Systems(1):83~97

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部