期刊文献+

四次多项式填充Julia集的连通性

Connectivity of Filled Julia Sets for Quartic Polynomials
下载PDF
导出
摘要 利用推广了的Branner-Hubbard和Yoccoz的Puzzle技巧研究一类四次多项式f填充Julia集的连通性,得到了f的填充Julia集的一个连通分支是非平凡的(即至少有两个点)充要条件是该分支是周期临界分支,或是某个周期临界分支在f迭代下的逆像. By the extend Puzzle technique of Branner-Hubbard and Yoccoz to study the filled Julia sets of a kind of quartic polynomials f, obtaining that a connected component of the filled Julia sets is nontrivial (that is, it has two points at least) if and only if it is a periodic critical component, or an inverse image of some periodic critical component under the iteration of f.
作者 方丽萍 王勇
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第6期557-561,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(10271063)
关键词 填充Julia集 连通性 PUZZLE 临界环阵 Julia sets connectivity Puzzle critical tableau
  • 相关文献

参考文献6

  • 1Beardon A F.Iteration of rational functions[M].London:Springer Press,1991.
  • 2任福尧.复解析动力系统[M].上海:复旦大学出版社,1996..
  • 3吕菁,邱维元.偶四次多项式Julia集的连通性[J].数学年刊(A辑),2003,24(4):399-406. 被引量:2
  • 4Milnor J.Local connectivity of Julia sets:expository lectures,the Mandelbrot set[M].London:Cambridge University Press,2000.67-116.
  • 5Branner B,Hubbard J H.The iteration of cubic polynomials Ⅱ:patterns and parapatterns[J].Acta Math,1992(169):229-325.
  • 6Douady A,Hubbard J H.On the dynamics of polynomial-like mappings[J].Ann Sci Ec Norm Sup,1985(18):287-343.

二级参考文献7

  • 1Branner, B. & Hubbard, J. H., The iteration of cubic polynomials II: Patterns and para-patterns [J], Acta Math., 169(1992), 229-325.
  • 2Douady, A. & Hubbard, J. H., On the dynamics of polynomial-like mappings [J], Ann.Sci. Ec. Norm. Sup., 18(1985), 287-343.
  • 3Fatou, P., Sur les equations fonctionnelles [J], Bull. Soc. Math. France, 47(1919),161-271.
  • 4Faught, D., Local connectivity in a family of cubic polynomials [D], Thesis, Cornell,1992.
  • 5Milnor, J., Dynamics in one complex variable [M], Introductory Lectures, 2nd Ed.,Vieweg, 2000.
  • 6Milnor, J., Local connectivity of Julia sets: expository lectures, the Mandelbrot set [M],Theme and Variations, Ed. TanLei, Cambridge University Press, 2000, 67-116.
  • 7Hubbard, J. H., Local connectivity of Julia sets and bifurcation loci: three theorems of J. C. Yoccoz, Topological Methods in Modern Mathematics [M], Goldberg and Phillips,Ed. Publish or Perish, 1993, 467-511.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部