期刊文献+

一种求解多峰函数优化问题的演化算法 被引量:3

New Evolutionary Algorithm for Solving Multimodal Function Optimization Problems
下载PDF
导出
摘要 针对演化计算产生新解无序的问题,提出了基于相似性的邻域搜索策略.利用邻域搜索,可以方便地建立自适应的新解产生机制.针对演化算法设计中存在的搜索效果和效率平衡问题,提出了利用适应值对个体进行分级的搜索策略.通过对个体的分级,可以区分个体在搜索过程中的职能:优秀的个体进行局部极小值的开采;其他的个体进行搜索空间的探索,以发现新的局部极小值.数值实验表明,新算法能有效处理低维多峰函数,能找到所有的全局最优解.对高维多峰函数,也能找到全局最优解. A similarity based neighborhood exploring strategy is proposed to deal with the mechanism of generating new individuals randomly in evolutionary computation. The new algorithm is called Similarity Based Evolutionary Algorithm (SBEA). Neighborhood exploring brings the ability to self adaptively generate new individuals easily. Aiming at balancing search results and search speed, we adopt the search strategy to classify the individuals by their fitness. Individuals' classification differentiate respective func tion in search process, that is the excellent individuals mine the local optimal solution and others explore the search domain to find new local optimal solution. The experiment results indicate the new algorithm is very efficient for the optimization of low-dimension multi-modal functions. We can obtain all the global opritual solutions easily and quickly. As to high-dimension multi-modal functions, the results are also satisfactory.
作者 蒋忠樟 成浩
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2006年第3期335-339,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(60133010)
关键词 相似性学习 邻域搜索 演化算法 similarity learning neighborhood exploring evolutionary algorithm
  • 相关文献

参考文献3

二级参考文献14

  • 1Pan Z J, Kang L S, Chen Y P. Evolutionary Computation[M]. Beijing: Tsinghua University Press, 1998.
  • 2Kreinovich V, Quintana C, Fuentes O. Genetic Algorithms What Fitness Scaling is Optimal[J]. Cybern and Systems, 1993,24 ( 1 ) : 9-26.
  • 3Baeck T , Hoffmeister F . Extended Selection Mechanisms in Genetic Algorithms[A]. Belew R Booker,ed. Proc 4th Int Conf on Genetic Algorithms[C]. Los Altos: Morgan Kaufmann, 1991.
  • 4Maza M D L,Tidor B. An Analysis of Selection Procedures with Particular Attention Paid to Proportional and Boltzmann Selection[A]. Forrest S ed. Proc. 5th Int Con f, on Genetic Algorithms [C]. Sen Mateo:Morgan Kaufmann,1993.
  • 5Baker J E.Adaptive Selection Methods for Genetic Algorithms[A]. Grefenstette J J ed. Proc. 1st Int Conf. on Genetic Algorithms [C]. Hillsdale, NJ:Lawrence Earlbaum Associates, 1985, 110-111.
  • 6Davidor Y, Schwefel H P. An Introduction to Adaptive Optimization Algorithms Based on Principles of Natural Evolution[A]. Souaeek B ed. Dynamic, Genetic and Chaotic Programming[C]. New York:John Wiley & Sons, 1992, 138-202.
  • 7Schwefel H P. Numerical Optimization of Computer Models[M]. Chichester, UK: John Wiley, 1981.
  • 8Goldberg D E. A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing [J]. Complex Systems, 1990, 4(4) :445-460.
  • 9PAN Z J,KANG L S,CHEN Y P.Evolutionary Computation [M].Beijing:Tsinghua Univer sity Press,1998(Ch).
  • 10Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Progra ms(3rd edition)[M]. Berlin:Springer Verlag, 1996.

共引文献21

同被引文献13

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部