摘要
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.