摘要
介绍了一个在微机上实现的有限词、特定人语音识别系统.该系统采用连续M元高斯混合密度的隐式马尔柯夫模型(CDHMM)为识别方法,以修改后的Baumwelch方法为训练重估算法.文中提出了对语音特征矢量非线性归一化预处理,和对训练数据不足的HMM模型特征空间进行后处理修正的算法,还提出一种基于语音知识的模型初始化方法.经实验证明,系统的识别率可以达到90%以上.
This paper introduced a limited vocabulary speaker-dependent marketable English speech recognition system running on a microcomputer-386 using VITERBI algorithm in recognition process under the Continuous Density Hidden Markov Model (CDHMM). Particularly, we propose a modified Baum-Welch algorithm as training algorithm, a nonlinear programming method to proceed time warping about feature vector, and a modification to the parameter of CDHMM for resolving insufficient training data. Besides, we have presented a method based on speech knowledge to initialize model. The experiments show that the recognition rate of our system is more than 90%.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1996年第6期141-146,共6页
Journal of Shanghai Jiaotong University