摘要
Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is proposed. To this end, the coupling of the artificial neural network (ANN) with the Xin'anjiang conceptual model with a view to enhance the quality of its flow forecast is presented. The approach uses the latest observations and residuals in runoff/discharge forecasts from the Xin'anjiang model. The two complementary models (Xin'anjiang & ANN) are used in such a way that residuals of the Xin'anjiang model are forecasted by a neural network model so that flow forecasts can be improved as new observations come in. For the complementary neural network, the input data were presented in a patterned format to conform to the calibration regime of the Xin'anjiang conceptual model, using differing variants of the neural network scheme. The results show that there is a substantial improvement in the accuracy of the forecasts when the complementary model was operated on top of the Xin'anjiang conceptual model as compared with the results of the Xin'anjiang model alone.
由于水文模型是对物理过程的简化,用以描述事物最主要的物理过程,从而数学模型受许多不确定因素的影响.因此,提出了一种耦合了人工神经网络(ANN)和新安江概念模型以提高径流预报精度的方法.该方法用最新的观测资料和新安江模型中产生的径流剩余误差/流量预报结果,其工作原理为用神经网络模型预报新安江模型误差,并作为新数据引入,使径流预报得到改进.对互补的神经网络模型而言,使用的变量要以特定格式输入以符合新安江模型的要求.结果表明,与单独用新安江模型预报相比,互补模型的洪水预报精度有明显提高.