摘要
基于解释的学习(EBL)克服了基于相似性的学习中的一些局限性,但是由于领域知识的不完全性和非单调性,在EBL过程中会出现多重解释问题,运用分层ATMS(基于解释的真值维护系统)来实现EBL方法.由于分层ATMS能处理非单调推理和多重假设集,因而它能根据不同原因解决EBL中的多重解释问题.
Explanation-based Learning can overcome some limitations in similarity-based learning. But due to the nonmonotonic or incomplete domain theories, multiple explanation problems may arise in EBL. This paper presents an approach by using stratified ATMS to realize EBL. Because stratified ATMS can deal with nonmonotonic reasoning and multiple assumption sets, it can solve multiple explanation problems in EBL according to different reasons.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1996年第1期117-121,134,共6页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
关键词
人工智能
多重解释问题
机器学习
EBL法
artificial intelligence
explanation-based learning
similarity-based leraning
multiple explanation problem
stratified ATMS