期刊文献+

欧拉公式的一个应用 被引量:1

A use of Euler's formula
下载PDF
导出
摘要 对于图G的所有顶点v∈V(G)的每个满足|L(v)|=m的列表分配L,如果G总存在一个L-染色,使得G的每个顶点至多有d个邻点与它自己染相同的颜色,则称图G是d-缺陷m-可选的。Ko-wei Lih等结合欧拉公式用放电的方法证明了每个不含4-圈和i-圈的平面图是1-缺陷3-可选的,其中i∈|5,6,7|。对于2-连通图,只用欧拉公式就能证明他们的结果。 A graph G is called m-choosable with impropriety d if, for every list assignment L satisfying |L(v)|= m for all v∈V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. Ko-Wei Lih and others used Euler's formula and the way of discharging to prove that every planar graph without 4-cycles and i-cycles for some i∈ {5,6,7} is (3,1) - choosable. For any 2-connected G, these results can be proved just by using Euler's formula.
出处 《河北省科学院学报》 CAS 2006年第2期1-4,共4页 Journal of The Hebei Academy of Sciences
关键词 列表非正常染色 (L d) 染色 (m d) 可选的 欧拉公式 List improper coloring ( L, d ) -coloring (m,d) -choosable Euler's formula
  • 相关文献

参考文献8

  • 1Erdos P,Rubin A L,Taylor H.Choosability in graphs[J].Congr.Numer.,1979,26:125-157.
  • 2Vizing V G.Vertex coloring with given colors (in Russian)[J].Diskret.Analiz.,1976,29:3-10.
  • 3Skrekovski R.List improper colorings of planar graphs[J].Comb.Prob.Comp.,1999,8:293-299.
  • 4Eaton N,Hull T.Defective list colorings of planar graphs[J].Bull.of the ICA,1999,25:79-87.
  • 5Lih K et al.A note on list improper coloring planar graphs[J].Appl.Math.Letters,2001,14:269-273.
  • 6Skrekovski R.A grotzsch-type theorem for list colorings with impropriety one[J].Comb.Prob.Comp.,1999,8:493-507.
  • 7Skrekovski R.List improper colorings of planar graphs with prescribed girth[J],Discrete Math.,2000,214:221-233.
  • 8Voigt M.A not 3-choosable planar graph without 3-cycles[J].Discrete Math.,1995,146:325-328.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部