期刊文献+

时滞离散马尔可夫跳跃系统的鲁棒故障检测 被引量:9

Robust Fault Detection for Discrete-time Markovian Jump Systems with Time-delays
下载PDF
导出
摘要 研究具有状态时滞离散马尔可夫跳跃系统的鲁棒故障检测问题.基于依赖于系统模态的滤波器构造残差产生系统,利用H∞控制理论将故障检测滤波器的设计归结为H∞滤波问题,应用线性矩阵不等式技术得到了此类系统的故障检测滤波器存在的充分条件.数值仿真表明所提方法是可行的. The robust fault detection problem for a class of discrete-time Markovian jump systems with time-delays is investigated. The residual generator is constructed based on the filter which parameter matrices depend on the system mode. The design of fault detection filter is formulated as H∞ filtering problem in terms of H∞ control theory. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities. A numerical example shows the efficiency and the feasibility of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2006年第7期796-800,共5页 Control and Decision
基金 国家自然科学基金项目(69874008)
关键词 时滞马尔可夫跳跃系统 故障检测 H∞滤波 线性矩阵不等式 Markovian jump system with time-delays Fault detection H∞ Filtering Linear matrix inequality
  • 相关文献

参考文献10

  • 1Frank P M, Ding S X. Survey of Robust Residual Generation and Evaluation Methods in Observer-based Fault Detection Systems [J].J of Process Control,1997, 7(6): 403-424.
  • 2Ding S X, Jeinsch T, Frank P M. A Unified Approach to the Optimization of Fault Detection Systems[J]. Int J of Adaptive Control Signal Processing, 2000, 14(7):725-745.
  • 3Niemann H, ,Saberi A, Stoorvogel A, et al. Exact,Almost and Delayed Fault Detection. An Observer-based Approach [J]. Int J of Robust and Nonlinear Control, 1999, 9(4):215-238.
  • 4Patton R J, Chen J, On Eigenstructure Assignment for Robust Fault Diagnosis [J]. Int J of Robust and Nonlinear Control, 2000, 10(14) : 1193-1208.
  • 5Nobrega E G, Abdalla M O, Grigoriadis K M. LMI-based Filter Design for Fault Detection and Isolation[A]. Proc of the 39th Conf on Decision and Control[C]. Sydney, 2000, 4329-4334.
  • 6Zhong M Y, Ding S X, Lam J, et al. An LMI Approach to Design Robust Fault Detection Filter for Uncertain LTI Systems[J]. Automatica, 2003, 39(3):543-550.
  • 7Cao Y Y, Lam J. Stochastic Stabilizability and H∞ Control for Discrete-time Jump Linear Systems with Time Delay[J]. J of Franklin Institute, 1999, 336(8)1263-1281.
  • 8Gao H J, Lam J, Xu S Y,et al. Stabilization and H∞ Control of Two-dimensional Markovian Jump Systems [J]. IMA J of Mathematical Control and Information,2004, 21(4):377-392.
  • 9Xu S Y, Chen T W, Lam J. Robust H- Filtering for Uncertain Markovian Jump Systems with Mode-dependent Time Delays[J]. IEEE Trans on Automatic Control, 2003, 48(5): 900-907.
  • 10Oliveira M C, Geromel J C, Bernussou J. Extend H2 and H∞ Norm Characterization and Controller Parameterizations for Discrete-time Systems[J]. Int J of Control, 2002, 75(9): 666-679.

同被引文献82

  • 1邵汉永,冯纯伯.二次型耗散线性离散系统的鲁棒性分析与控制[J].控制与决策,2005,20(2):142-146. 被引量:7
  • 2董心壮,张庆灵.线性广义系统的鲁棒严格耗散控制[J].控制与决策,2005,20(2):195-198. 被引量:11
  • 3董心壮,张庆灵.滞后离散广义系统的鲁棒严格耗散控制[J].控制理论与应用,2005,22(5):743-747. 被引量:12
  • 4Chen J, Patton R J. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.
  • 5Zhong M, Ding S X, Lam J, et al. An LMI approach to design robust fault detection filter for uncertain LTI systems[J]. Automatica, 2003, 39(3): 543-550.
  • 6Ding S X. Model-based fault diagnosis techniques[M]. Berlin: Springer-Verlag, 2008.
  • 7Jiang B, Wang J, Soh Y C. An adaptive technique for robust diagnosis of faults with independent effects on systemoutputs[J],Int J of Control, 2002, 75(11): 792-802.
  • 8DeFarias D P, Geromel J C, do Val J B R, et al. Output feedback control of Markov jump linear systems in continuous-time[J]. IEEE Trans Automatic Control, 2000, 45(5): 944-949.
  • 9Shi P, Xia Y, Liu G, et al. On designing of slidingmode control for stochastic jump systems [J]. IEEE Trans Automatic Control, 2006, 51 (1) : 97-103.
  • 10De Souza C E, Trofino A, Barbosa K A. Modeindependent H∞ filters for Markovian lump linear systems[J]. IEEE Trans Automatic Control, 2006, 51 (11) : 1837-1841.

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部