期刊文献+

支持向量回归的一种网络优化策略

Network Optimization Strategy of Support Vector Regression
下载PDF
导出
摘要 提出一种用于支持向量回归的网络优化策略.学习策略分为两个阶段:首先训练支持向量机,得到支持向量回归的初始结构和参数,构造一个无阈值的支持向量回归网络;然后通过带有遗忘因子的递归最小二乘算法,优化计算支持向量回归网络的权值,以达到更好的函数拟合精度.与支持向量回归相比,这种策略可以得到最优的权值和阈值.仿真结果表明,该网络性能优良,具有在线应用的潜力. A new network optimization strategy of support vector regression (SVR) is presented. The proposed learning method includes two steps: First, the initial structure and parameters of SVR are obtained by learning, which is applied to construct support vector regression network without bias. Then the weights of SVRN are updated by the recursive least square method with forgetting factor for the better function approximation accuracy. Compared with the SVR, it can find the optimal weights and bias. The simulation result shows the effectiveness of the optimization method and can be applied to model online.
出处 《控制与决策》 EI CSCD 北大核心 2006年第7期837-840,共4页 Control and Decision
基金 国家863计划项目(2002AA412010) 科技部科技攻关项目(2003EG113016) 北京市教委重点学科共建项目
关键词 支持向量回归 递归最小二乘算法 网络优化 Support vector regression Recursive least squares network optimization
  • 相关文献

参考文献9

  • 1VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 2Trafalis T B, Inco H. Support Vector Machine for Regression and Applications to Financial Forecasting[A]. Proc of the IEEE INNS-ENNS Int Joint Conf on Neural Networks[C]. Como, 2000, 6: 348-353.
  • 3Tay F E H, Cao L. Application of Support Vector Machines in Financial Time Series Forecasting [J].Omega, 2001, 29(4): 309-317.
  • 4Gestel T V, Suykens J A, Baestaens D E, et al.Financial Time Series Prediction Using Least Squares Support Vector Machines within the Evidence Framework [J]. IEEE Trans on Neural Networks,2001, 12(4): 809-821.
  • 5Drezet P M L, Harrison R F. Support Vector Machines for System Identification [A]. UKACC Int Conf on Control[C]. Swansea, 1998: 688-692.
  • 6Gretton A, Doucet A, Herbrich R, et al. Support Vector Regression for Black-box System Identification[A]. Proc of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing [C].Singapore, 2001: 341-344.
  • 7Suykens J. Nonlinear Modeling and Support Vector Machines [A]. IEEE Instrumentation and Measurement Technology Conf[C]. Budapest, 2001: 287-294.
  • 8Flake G W, Lawrence S. Efficient SVM Regression Training with SMO[J]. Machine Learning, 2002, 41(1): 271-290.
  • 9刘宏才.系纺辨识与参数估计[M].北京:冶金工业出版社,1999:74—88.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部