摘要
首先在一般的H ilbert空间中研究了非线性微分方程单支θ-方法的数值稳定性,得到了该问题数值稳定性的一个充分条件.然后研究了单支θ-方法的代数稳定性,针对各种不同的情形,得到了该问题代数稳定性的一些结论,这些结论是文献[5]中相应结论的本质改进.
The numerical stability of One - Leg - Methods for nonlinear differential equations in Hilbert space are studied in this paper firstly, we gained a sufficient condition for the numerical stability of these problems. And then the algebraic stability of One - Leg - Methods is studied, according to various conditions, we gained some conclusions for the algebraic stability of these problems, these conclusions are the essential improvement of those in document[5 ].
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2006年第4期15-17,共3页
Journal of Anhui University(Natural Science Edition)
关键词
微分方程
单支Θ-方法
数值稳定性
代数稳定性
differential equations
One - Leg - Methods
numerical stability
algebraic stability