期刊文献+

多连通多边形的内部Voronoi图的顶点和边数的上界(英文)

Upper Bounds on the Size of Inner Voronoi Diagrams of Multiply Connected Polygons
下载PDF
导出
摘要 多边形的 Voronoi 图在路径规划、碰撞检测等方面有着广泛的应用,其顶点和边数在这些应用算法的复杂度分析方面起着重要作用.Held 证明了一个简单多边形的内部 Voronoi 图最多有 n+k 2 个顶点和 2(n+k) 3条边,其中 n 和 k 分别是多边形的顶点和内尖点数.但其结论不能适用于多连通多边形.对多连通多边形进行研究,通过将其 Voronoi 图转化为有根树,并利用有根树的性质,给出了其内部 Voronoi 图的顶点和边数上界的估计,并对 Voronoi区域的边界所包含顶点和边数的平均值进行了讨论.“SDU 数字博物馆”系统所采用的基于 Voronoi图的可见性算法的复杂度分析,就利用了所得出的结论. The Voronoi diagram (VD) of a planar polygon has many applications, from path planning in robotics to collision detection in virtual reality. To study the complexity of algorithms based on Voronoi diagram, it is important to estimate the numbers of vertices and edges of a VD. Held proves that the inner Voronoi diagram of a simple polygon has at most n+k-2 vertices and 2(n+k)-3 edges, where n is the number of the polygon's vertices and k is the number of reflex vertices. But this conclusion holds not for a multiply-connected polygon, i.e. a polygon with "holes". In this paper, by constructing a rooted tree from a VD, and based on some properties of the rooted tree, new upper bounds on the numbers of vertices and edges in an inner Voronoi diagram of a multiply-connected polygon are proved. The average numbers of Voronoi vertices and edges on the boundary of a VD are also presented. The result of this paper has been used to analyze the complexity of VD-based visibility computing algorithm in SDU Virtual Museum.
出处 《软件学报》 EI CSCD 北大核心 2006年第7期1527-1534,共8页 Journal of Software
基金 国家自然科学基金 山东省自然科学基金 中国教育科研网格计划~~
关键词 计算几何 VORONOI图 复杂度分析 多边形 多连通多边形 computational geometry Voronoi diagram complexity analysis polygon multiply connected polygon
  • 相关文献

参考文献20

  • 1Held M.On the Computational Geometry of Pocket Machining.New York:Springer-Verlag New York,Inc.,1991.65-78.
  • 2Karavelas MI.Robust and efficient implementation for the segment Voronoi diagram.In:Sugihara K,ed.Proc.of the Int'l Symp.on Voronoi Diagrams in Science and Engineering.Tokyo:University of Tokyo,2004.51-62.
  • 3Kim DS,Kim D,Sugihara K.Voronoi diagram of a circle set from Voronoi diagram of a point set:Ⅱ.Geometry.Computer Aided Geometric Design,2001,18(6):563-585.
  • 4Sack JR,Urrutia J.Handbook of Computational Geometry.Amsterdam:Elsevier Science Publishers B.V.North-Holland,2000.201-282.
  • 5Held M.VRONI:An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments.Computational Geometry,2001,18(2):95-123.
  • 6Held M,Lukacs G,Andor L.Pocket machining based on contour-parallel tool paths generated by means of proximity maps.Computer-Aided Design,1994,26(3):189-203.
  • 7Pendragon T,While RL.Path-Planning by tessellation of obstacles.In:Oudshoorn MJ,ed.Proc.of the 26th Australasian Computer Science Conf.(ACSC 2003).South Australia:Australian Computer Society Inc.,2003.3-9.
  • 8Ramamurthy R,Farouki RT.Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I:Theoretical foundations.Journal of Computational and Applied Mathematics,1999,102(2):119-141.
  • 9Yang CL,Wang L,Wang XT,Xu YN,Meng XX.A system framework and key techniques for multi-user cooperative interaction in virtual museum based on Voronoi diagram.In:Shen WM,Chao KM,Younas M,Lin ZK,Barthes JP,eds.Proc.of the 9th Int'l Conf.on CSCW in Design.Coventry:Coventry University,2005.966-970.
  • 10Aronov B.A lower bound on Voronoi diagram complexity.Information Processing Letters,2002,83(4):183-185.

二级参考文献90

  • 1孟月梅.带有任意多个凸台的不规则槽腔环切加工的刀位计算方法[J].航空工艺技术,1993(6):10-12. 被引量:2
  • 2牟欣,刘晓云,张曰敏.三维复杂型腔的数控加工新方法[J].计算机工程,1995,21(2):28-31. 被引量:1
  • 3闫兵.基于Voronoi图的型腔数控加工轨迹规划方法[硕士论文].天津:天津大学机械系,1996..
  • 4[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 5[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 6[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 7[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 8[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 9[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 10[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部