摘要
本文研究当κ很大时置于非均匀外加磁场中超导体的能量,其中外加磁场远离第一与第二临界磁场.我们得到了任意外加磁场中极小能量的渐进性态,从而解决了Sandier和Serfatv提出的猜想:极小能量与变磁场的权的形式成比例.
In this paper, we study the Ginzburg-Landau energy of superconductors submitted to a possibly non-uniform magnetic field p(x)hex in the limit of a large κ, for the applied magnetic field varying between the two critical fields Hc1 and Hc2. We obtain the asymptotic behavior of minimal energy for arbitrary fields, which answers a conjecture raised by Sandier and Serfaty.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第4期763-774,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10071067
1047111971036)