期刊文献+

非齐型空间上Triebel-Lizorkin空间的T1定理

T1 Theorem for Weighted Triebel-Lizorkin Spaces on Nonhomogeneous Spaces
原文传递
导出
摘要 本文在非齐型空间上证明具有Dini核条件的T1定理,获得了加权Fefferman- Stein向量值极大不等式.进一步地,在非齐型空间上得到了加权Tiebel-Lizorkin空间的T1定理. In this paper, the authors prove with Dini kernel conditions, obtain weighted T1 theorem on nonhomogeneous spaces version of Fefferman-Stein vector valued maximal inequality and establish T1 theorem for weighted Triebel-Lizorkin spaces on nonhomogeneous spaces.
作者 韩彦昌 许明
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第4期779-790,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10571182)中山大学高等学术研究中心基金项目
关键词 T1定理 非齐型空间 TRIEBEL-LIZORKIN空间 T1 theorem nonhomogeneous spaces Triebel-Lizorkin spaces
  • 相关文献

参考文献14

  • 1David G.,Journé J.L.,A boundedness criterion for generalized Calderón-Zygmund operators,Ann.Math.,1984,120:371-397.
  • 2David G.,Journé J.L.,Semmes S.,Operateurs de Calderón-Zygmund,fonction para-accretive et interpolation,Rev.Mat.Iberoamericanna,1985,1:1-56.
  • 3Coifman R.,Weiss G.,Analyse harmonique non-commutative sur certains espaces homogenes,Lecture Notes in Math.,Vol.242,Springer-Verlag,1971.
  • 4Hah Y.S.,Yang D.C.,Triebel-Lizorkin spaces with non doubling measures,Studia Math.,2004,162(2):105-139.
  • 5Orobitg J.,Pérez C.,Apweights for non doubling measures in Rn and application,Trans.Amer.Math.Soc.,2002,354:2013-2033.
  • 6Sawano Y.,Sharp estimates of the modified Hardy Littlewood maximal operator on the non-homogeneous space via covering lemmas,Hokkaido Math.J.to appear.
  • 7Tolsa X.,Littlewood-Paley theory and the T(1) theorem with non-doubling measures,Adv.Math.,2001,164:57-116.
  • 8Tolsa X.,BMO,H^1 and Calderón-Zygmund operators for non doubling measures,Math.Ann.,2001,319:89-149.
  • 9Nazarov F.,Treil S.,Volberg A.,The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin,Preprint. Tolsa X.,Painleve's problem and the semidditivity of analytic capacity,Acta Math.,2003,190(1):105-149.
  • 10Verdera J.,The fall of the doubling condition in Calderón-Zygmund theory,Publ.Mat.,2002,Vol.Extra 275-292.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部