期刊文献+

具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题

Coexistence of a Strongly Coupled Elliptic System with Holling TypeⅡFunctional Response
原文传递
导出
摘要 本文研究带齐次Dirichlet边界条件的强耦合椭圆系统,首先证明了当食饵和捕食者的扩散率足够大,或者出生率足够小时,系统不存在共存现象,并给出半平凡解存在的充分条件.然后利用Schauder不动点定理,得到强耦合的椭圆问题至少有一个正解存在的充分条件.该条件说明只要捕食者的内部竞争强,物种的交叉扩散相对弱,或者捕获率足够小,物种的交叉扩散相对弱,强耦合系统就至少有一个正解存在. A strongly coupled elliptic system with homogeneous Dirichlet boundary conditions is considered. It is shown that there is no coexistence state if diffusion rates are strong, or if the intrinsic growth rates are slow. Making use of the Schauder fixed point theory, we derive some sufficient conditions to have a coexistence state for the strongly coupled elliptic problem. Moreover, our results reveal that this problem possesses at least one coexistence state if the intra-specific competition of predator is strong and cross-diffnsions are relatively weak, or if the capturing rate is slow and cross-diffusions are relatively weak.
作者 周玲
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第4期827-834,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10171088)
关键词 交叉扩散 自扩散 强耦合椭圆系统 cross-diffusion self-diffusion strongly coupled elliptic system
  • 相关文献

参考文献8

  • 1Dancer E.N.,A Counterexample of competing species equations,Differential Integral Equations,1996,9:239-246
  • 2Ruan W.H.,Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,J.Math.Anal.Appl.,1996,197:558-578.
  • 3Nakashima K.,Yamada Y.,Positive Steady States for Prey-predator Models with Cross-diffusion,Adv.Differential Equations,1996,1:1099-1122.
  • 4Lou Y.,Ni W.M.,Diffusion,self-diffusion and cross-diffusion,J.Differential Equations,1996,131:79-131.
  • 5Lou Y.,Ni W.M.,Diffusion,vs.cross-diffusion:an elliptic approach,J.Differential Equations,1999,154:157-190.
  • 6Kim K.I.,Lin Z.,Coexistence of three species in a strongly coupled elliptic system,Nonlinear Anal.,2003,55:313-333.
  • 7Wang M.X.,Stationary patterns of strongly coupled prey-pradtor models,J.Math.Anal.Appl.,2004,292:484-505.
  • 8Gilgarg D.N.,Trudinger N.,Elliptic partial differential equations of second order,New York:Springer,1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部