期刊文献+

对称Cantor集自乘积集的Hausdorff中心测度

The Hausdorff Centered Measure of the Cartesian Product of the Symmetric Cantor Set with Itself
原文传递
导出
摘要 设Cλ是由迭代函数系统(IFS){f1,f2}生成的对称Cantor集,其中f1(x)=λx, f2(x)=1-λ+λx,0<λ<1/2,x∈[0,1].在压缩比λ满足一定条件时,本文得到了Cλ与其自身的笛卡尔乘积Cλ×Cλ的Hausdorff中心测度的计算公式. Let Cλ be the symmetric Cantor set generated by the iterated function system (IFS){fl, f2}, where f1(x) = λx, f2(x) = 1 - λ + λx, 0 〈 λ 〈 1/2, x ∈ [0, 1]. In this paper, we determine the exact Hausdorff centered measure of Cλ × Cλ under some conditions.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第4期919-926,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金广东省自然科学基金博士科研启动基金省教育厅自然科学基金资助项目
关键词 HAUSDORFF中心测度 上球密度 对称Cantor集 Hausdorff centered measure upper spherical density symmetric Cantor set
  • 相关文献

参考文献2

二级参考文献14

  • 1[1]Taylor S. J. and Tricot C. Packing measure, and its evaluation for a Brownian path. Trans. Amer. Math. Soc., 1985, 288: 679-699.
  • 2[2]Tricot C. On the classification of bounded sets of zero Lebesgue measure. Ph. D thesis, University of Geneva, 1979.
  • 3[3]Tricot C. Two definitions of fractional dimension. Math. Proc.Cambridge Philos. Soc., 1982, 91: 57-74.
  • 4[4]Taylor S. J. and Tricot C. The packing measure of rectifiable subsets in the plane. Math. Proc. Camb. Phil. Soc., 1986, 99:285-296.
  • 5[5]Rogers C.A. Hausdorff Measures. London-New York: Cambridge University Press, 1970.
  • 6[6]Falconer K.J. Fractal Geometry: Mathematical Foundations and Applications. Chichester: John Wiley & Sons, 1990.
  • 7[7]Mattila P. Geometry of Sets and Measures in Euclidean Spaces.Cambridge: Cambridge University Press, 1995.
  • 8[8]Raymond X. S. and Tricot C. Packing regularity of sets in nspace. Math. Proc. Camb. Phil. Soc., 1988, 103: 133-145.
  • 9[9]Feng D.J. Exact packing measure of linear Cantor sets. Math.Nachr., 2003, 248-249: 102-109.
  • 10[10]Marion J. Calcul de la mesure de Hausdorff des ensembles parpaits homogènes linéaires. Ann. Sc. Math. Quebec, 1989, 13: 53-78.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部