期刊文献+

一种基于PIM与核方法的模糊聚类新算法

A New Fuzzy Clustering Algorithm Based on PIM and the Kernel Method
下载PDF
导出
摘要 本文针对模糊C均值聚类在大数据量时收敛较慢以及不能对多种数据结构有效聚类的缺点,结合PIM算法与核方法提出了一种新的高效聚类算法———KPIM算法,并从理论上证明了该算法的收敛性。最后利用标准实验数据IRIS数据集测试,结果表明KPIM算法在保证收敛速度的同时,聚类效果更有效。 The traditional "fuzzy" clustering (FCM) converges slowly when confronted with a large number of data points, meanwhile it can't deal with non - hyper spherical data structure, which compel us to present a new fuzzy clustering algorithm - the KPIM algorithm based on partition index maximization (PIM) algorithm and the kernel method. As well the paper proves convergence theorem of the new algorithm. The results of experiments on the real data show that the KPIM algorithm can effectively cluster on data with diversiform structures while guaranteeing the computation time in contrast to other previous algorithms.
出处 《中国管理科学》 CSSCI 2006年第3期76-79,共4页 Chinese Journal of Management Science
关键词 模糊 聚类 PIM算法 核方法 KPIM算法 fuzzy clustering PIM kernel method KPIM algorithm
  • 相关文献

参考文献16

  • 1Giles DEA & Draeseke R.Econometric modeling using pattern recognition via the fuzzy C-means algorithm[M].Computer-aided econometrics,2001.
  • 2Bezdek,JC.Pattern Recognition with Fuzzy Objective Function Algorithms[M].Plenum Press,1981,New York.
  • 3Zio,E,Baraldi,P.A fuzzy clustering approach for transients classification[J].Applied Computational Intelligence,2004.
  • 4Dogan Ozdemir & Lale Akarun.Fuzzy Algorithms for Combined Quantization and Dithering[J].IEEE Transactions on Image Processing,2001,(10):923-931.
  • 5Jiuh-Biing Sheu.A fuzzy clustering approach to real -time demand-responsive bus dispatching control[J].Fuzzy Sets and Systems,2005,150:437-455.
  • 6Dogan Ozdemir & Lale Akarun.A fuzzy algorithm for color quantization of images[J].Pattern Recognition,2002,35:1785-1791.
  • 7Girolami M.Mercer Kernel Based Clustering in Feature Space[J].IEEE Trans on Neural Networks,2002,13(3):780-784.
  • 8Bezdek JC.A convergence theorem for the fuzzy ISODATA clustering algorithms[J].IEEE Trans.Pattern Anal.And Machine Intell.,1980,(2):1-8.
  • 9Bezdek JC.Convergence Theory for Fuzzy C Means:Counter Examples and Repairs[J].IEEE Trans on SMC,1987,17(4):873-877.
  • 10Selim SZ & Ismail MA.On the local optimality of the fuzzy ISODATA clustering algorithm[J].IEEE Trans.Pattern Anal.Mach.Intell.1986,8:284-288.

二级参考文献34

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,IEEE ISPACS’98,1998年,387页

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部