期刊文献+

一种新的贝叶斯调制分类算法 被引量:4

A Novel Bayesian Modulation Classification Algorithm
下载PDF
导出
摘要 提出了一种基于马尔可夫链蒙特卡罗(MCMC)的数字调制分类方法。针对存在未知残留载波相位和频率时贝叶斯分类难以实现的问题,采用Metropolis-Hastings(M-H)算法估计边缘似然概率密度,从而在分类性能上保持了贝叶斯分类的理论最优性和稳健性。利用对比实验验证了方法的性能。 A novel method is proposed for digital modulation classification based on Markov chain Monte Carlo (MCMC) Considering the difficulty for Bayesian classifier with unknown residual carrier phase and frequency, marginal likelihood probability density is estimated by Metropolis-Hastings (M-H) algorithm, which kept the theoretical optimality and robustness of Bayesian classifier, The simulated results show that the novel classifier outperforms the one based on cumulants.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第7期1233-1237,共5页 Journal of Electronics & Information Technology
关键词 马尔可夫链蒙特卡罗(MCMC) 调制分类 贝叶斯分类器 Metropolis-Hastings(M-H)算法 边缘似然函数 Markov Chain Monte Carlo (MCMC), Modulation classification, Bayesian classifier, Metropolis-Hastings (M-H) algorithm, Marginal likelihood function
  • 相关文献

参考文献11

  • 1Wei W, Mendel J M. Maximum-likelihood classification for digital amplitude-phase modulation. IEEE Trans. on Comm., 2000,48(2): 189- 193.
  • 2Polydoros A, Kim K. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Trans.on Comm., 1990, 38(8): 1199 - 1211.
  • 3Huang C Y, Polydoros A. Likelihood methods for MPSK modulation classification. IEEE Trans. on Comm., 1995,43(2/3/4): 1493- 1504.
  • 4Azzouz E E, Nandi A K. Automatic identification of digital modulation types. Signal Processing, 1995, 47(1 ): 55 - 69.
  • 5Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants. IEEE Trans. on Comm., 2000,48(3): 416 - 429.
  • 6Andrieu C, De Freitas N, Doucet A, Jordan M I. An introduction to MCMC for machine learning. Machine Learning, 2003,50(1/2): 5 - 43.
  • 7Chib S, Greenberg E, Understanding the Metropolis-Hastings algorithm. American Statistician, 1995, 49(4): 327 - 335.
  • 8Lesage S, Toumeret J Y, Djuric P M. Classification of digital modulations by MCMC sampling, IEEE ICASSP, Salt Lake City,Utah, May 2001, vol.4:2553 - 2556.
  • 9Sills J A. Maximum-likelihood modulation classification for PSK/QAM, IEEE MILCOM, Atlantic City, N J, Oct.31-Nov.3,1999:217 - 220.
  • 10Chib S, Jeliazkov I. Marginal likelihood from the Metropolis-Hastings output. Journal of the American Statistical Association, 2001, 96(453): 270- 281.

同被引文献35

  • 1李雨倩,刘玉超,郭兰图.复杂电磁环境下基于信号时频图像的调制识别[J].太赫兹科学与电子信息学报,2021,19(4):562-568. 被引量:4
  • 2王自维,姚志成,王海洋,李昱婷,侯范.基于改进LeNet-5模型的无人机遥控信号调制方式识别算法[J].火箭军工程大学学报,2021(4):30-34. 被引量:1
  • 3Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IETCommunications, 2007, 1(2):137-156.
  • 4Xu J L, Su W, Zhou M C. Likelihood-ratio approaches to auto- matic modulation classification[J]. IEEE Trans. on System, Man and Cybernetics, 2011, 41(4): 455-469.
  • 5Hameed F, Dohre O A, Popescu D. On the likelihood-based approach to modulation classification[J]. IEEE Trans. on Wire less Communications, 2009, 8(12) :5884.
  • 6Xu J I., Su W, Zhou M C. Distributed classification with multiple sensors[J]. IEEE Sensors 2010, 10(11) :1779 - 1785.
  • 7Xu J L, Zhou M C, Su W. Discrete likelihood ratio test ligent signal recognition in software defined radio[J]. and Optical Communications Conference, 2010 : 1 - 6.
  • 8Journal, Derakhtian M, Tadaion A A, Gazor S. Modulation classification of linearly modulated signals in slow flat fading channels E Jl. IET Signal Processing, 2011, 5(5) :443 - 450.
  • 9Dobre O A, Hameed F. Likelihood based algorithms for linear digital modulation classification in fading channels [C]//Proc. of the Canadian Conference on Electrical and Computer Engi- neering, 2006:1347 - 1350.
  • 10Shi Q H, Karasawa Y. On signal phase based modulation classi fication[C]//Proc, of the IEEE International Conference on Communications, 2011,1 - 5.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部