期刊文献+

三自由度纳米磨削微定位平台的运动学特性 被引量:6

Kinematic Characteristics of a 3-DOF Micropositioning Table for Precision Grinding
下载PDF
导出
摘要 为了克服精密平面磨床进给系统分辨率低而难以实现纳米级磨削加工的不足,设计了一台三自由度微定位平台来实现纳米定位和振动误差动态补偿.该微定位平台采用3个高刚度压电陶瓷驱动器并联驱动,3个弹性铰链实现动平台的导向,利用3个高精度的电容式位移传感器测量动平台的实际位姿.为了深入研究三自由度微定位平台的运动学特性,分别利用欧拉角和RPY角描述动平台的姿态并基于空间解析几何理论,建立了微定位平台的正、逆解运动学模型,得到了传感器测量值和压电陶瓷驱动点的实际位移输出值间的映射关系,分析了不同姿态描述之间的内在联系,并研究了微定位平台受到压电陶瓷驱动器伸长量限制时的可达姿态空间.试验验证了三自由度微定位平台的特性和所建模型的正确性.试验表明该微定位平台的z向最大位移为12μm,章动角随进动角的不同而变化,最大可达130μrad. In order to overcome the shortage that precision grinding machine can not realize nanometer level machining due to lower infeed resolution, a 3-DOF micropositioning table is utilized as auxiliary table for precision positioning and dynamic compensation. The micropositioning table is in parallel driven by three piezoelectric actuators with high stiffness and guided by three flexure hinges. Three high precision capacitive displacement sensors are used to measure the position and orientation of the moving platform. To better understand the kinematic characteristics of the 3-DOF micropositioning table, the direct and inverse kinematic models are obtained under Eular and RPY angle orientation description based on the spatial analytic geometry theory. The mapping relationship between the measurement values and the actual displacement of the driving points is given. The inherent relationship between different orientation descriptions is also investigated, and the reachable orientation space due to the limitation of the expansion of the piezoelectric actuators of the micropositioning table is achieved. The experimental tests are carried out to verify the performance of the micropositioning table and established models. It is noted that the maximum displacement in z direction is up to 12 μm. The nutation angle changes with the procession angle and the maximum nutation angle is approximately 130 μrad.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第7期777-782,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金(50275104) 天津自然科学基金(013605311).
关键词 微定位平台 精密平面磨床 运动学 姿态空间 micropositioning table precision surface grinding machine kinematics orientation space
  • 相关文献

参考文献9

  • 1Gao Yongsheng, Zhang Dawei, Yu Chiwai. Dynamic modeling of a novel workpiece table for active surface grinding control[J]. International Journal of Machine Tools and Manufacture, 2001,41(4):609-624.
  • 2ZhangDawei,TianYanling,GaoYongsheng.DEVELOPMENT OF A 3-DOF MICRO-POSITIONING WORKPIECE TABLE[J].Chinese Journal of Mechanical Engineering,2004,17(1):46-50. 被引量:5
  • 3Zhong Zhaowei, Nakagawa Takeo. Development of a micro displace ment table for ultra-precision machining and grinding for curved surfaces by the use of it [J]. International Journal of Japan Society Precision Engineering, 1992, 6(2) : 102-107.
  • 4Kim Jeong Du, Nam Soo Ryong. A piezoelectrically driven micro-positioning system for ductile-mode grinding of brittle materials [ J ]. Journal of Materials Processing Technology,1996, 61(6):309-319.
  • 5Otsuka Jiro, Koshimizu Shigeomi. An ultra-fine motion using piezoelectric actuator for ultra-precision grinding [ J ].International Journal of Japan Society Precision Engineering, 1996, 30(4):345-346.
  • 6Mizutani Katsumi, Kawano Tsuneo, Tanaka Yoshio. A piezoelectric-drive table and its application to micro grinding of ceramic materials [ J]. Precision Engineering, 1990, 12(4):219-226.
  • 7Shinno Hidenori, Hashizume Hitoshi, Yoshioka Hayato, et al. Χ-Y-θ nano-positioning table system for a mother machine[J]. Annals of CIRP, 2004, 53(1): 337-340.
  • 8Reynaerts D, Brussel H V, Bender F A, et al. Construction and control of an ultra-stiff nanopositioning system [C]//Proc 1st Int Euspen Conf. Bremen, Germany, 1999: 36-49.
  • 9Ni Jun, Zhu Zhenqi. Design of a linear piezomotor with ultra-high stiffness and nanoprecision[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4) : 441-443.

二级参考文献1

共引文献4

同被引文献43

  • 1王勇,刘志刚,薄锋,朱健强.五自由度纳米级定位工作台的设计研究[J].中国机械工程,2005,16(15):1317-1321. 被引量:4
  • 2罗勇.主动调节刚性支撑薄膜型反射镜系统[J].红外,2006,27(8):39-43. 被引量:1
  • 3殷晨波,周庆敏,徐海涵,杨敏.基于虚拟零力矩点FZMP的拟人机器人行走稳定性仿真[J].系统仿真学报,2006,18(9):2593-2597. 被引量:11
  • 4Li H,Shin Y C. A study on chatter boundaries of cylindrical plunge grinding with process condition-dependent dynamics[J]. International Journal of Machine Too& andManufacture,2007,47 (10) : 1563-1572.
  • 5Liu Z,Payre G. Stability analysis of doubly regenerative cylindrical grinding process[J]. Journal of Sound and Vibration,2007,301 (5) :950-962.
  • 6Altintas Y ,Weck M. Chatter stability of metal cutting and grinding[J]. CIRP Annals-Manufacturing Technology,2004,53 (2) :619-642.
  • 7Bukkapatnam S T,Palanna R. Experimental characterization of nonlinear dynamics underlying the cylindrical grinding process[J]. Journal of Manufacturing Science and Engineering,2004,126 (2) :341-344.
  • 8Inasaki I,Karpuschewski B,Lee H S. Grinding chatterorigin and suppression[Jl. CIRP Annals-Manufacturing Technology,2001,50 (1) :515-534.
  • 9Tang W X,Ai X,Wu H Y,et al. Structure dynamic modification and optimization for high-speed face milling cutter[J]. Materials Science Forum ,2004,47 (1) :663-667.
  • 10Budak E,Ozlu E. Analytical modeling of chatter stability in turning and boring operations :A multi-dimensional approach [J]. CIRP Annals-Manufacturing Technology, 2007,56 (1) :401-404.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部