期刊文献+

一类椭圆型方程的非平凡解的估计 被引量:1

Estimate of Nontrivial Solution for an Elliptic Equation
下载PDF
导出
摘要 对一类包含临界指数的椭圆方程,我们给出了这个方程的非平凡解的存在性,并得到这个非平凡解的一个估计. The existence of nontrivial solution for an elliptic equation involving the critical exponent is obtained. Furthermore, an estimate of a nontrivial solution is given.
作者 周展宏
出处 《湛江师范学院学报》 2006年第3期24-26,共3页 Journal of Zhanjiang Normal College
基金 广东海洋大学自然科学基金资助项目(0412098)
关键词 非平凡解 解的估计 临界指数 nontrivial solution estimate of solution critical exponent
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Ghoussoub N,Yang G. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents[J]. Trans Amer Math Soc,2000,352(12):5703-5743.
  • 2[2]Chaudhuri N. Existence of positive solutions of some semilinear elliptic equations with singular coefficients[J].Proceding of the Royal Society of Edinburgh,2001,131A:1275-1295.
  • 3[3]Lions P L.The concentration-compactness principle in the calculus of variations,the limit case,part 1[J].Rev Mat Ibero,1985,1:541-597.
  • 4[4]Lions P L.The concentration-compactness principle in the calculus of variations,the limit case,part 1[J].Rev Mat Ibero,1985,1:45-121.
  • 5[5]Abdellaoui B,Pearl I. Some results for semilinear elliptic equations with critical potential[J].Proceding of the Royal Society of Edinburgh,2002,132A:1-24.
  • 6[6]Brezis H,Nirenberg L.Positive solutions of nonlinear elliptic equation invoving critical Sobolev exponents[J].Comm Pure Appl Math,1983,36:437- 477.
  • 7[7]Goncalves J V,Miyagaki O H. Multiple positive solutions for semilinear elliptic equation in R involving subcritical exponents[J]. Nonlinear Anal,1998,32(1):41-51.
  • 8[8]SHEN Yao-tian,YAN Shu-sen. The Calculus of Variations on Quasilinear Elliptic Equations[M].Guangzhou:Press of South China University of Technology,1995(in Chinese).

共引文献1

同被引文献3

  • 1许兴业.一类非线性椭圆型方程解的存在惟一性[J].广东教育学院学报,2005,25(3):21-23. 被引量:3
  • 2周杰,杨作东.一类拟线性椭圆型方程正奇异解的能量估计[J].南京师范大学学报:自然科学版,2006(1):21-24.
  • 3Yang Zuodong. Existence of positive bounded entire so lutions of quasilinear elliptic equations [J]. App lied Math and Com putation,2004, 156( 3): 743 - 754.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部