摘要
A theoretical study on the blue-shifted H-bond N-H…O and red-shifted H-bond O-H…O in the complex HNO…H2O2 was conducted by employment of both standard and counterpoise-corrected methods to calculate the geometric structures and vibrational frequencies at the MP2/6-31G(d), MP2/6-31 + G(d,p), MP2/6-311 + + G(d,p), B3LYP/6-31G(d), B3LYP/6-31 +G(d,p) and B3LYP/6-311 + +G(d,p) levels. In the H-bond N-H…O, the calculated blue shift of N-H stretching frequency is in the vicinity of 120 cm^-1 and this is indeed the largest theoretical estimate of a blue shift in the X-H…Y H-bond ever reported in the literature. From the natural bond orbital analysis, the red-shifted H-bond O-H…O can be explained on the basis of the dominant role of the hyperconjugation. For the blue-shifted H-bond N-H…O, the hyperconjugation was inhibited due to the existence of significant electron density redistribution effect, and the large blue shift of the N-H stretching frequency was prominently due to the rehybridization of spn N-H hybrid orbital.
A theoretical study on the blue-shifted H-bond N-H…O and red-shifted H-bond O-H…O in the complex HNO…H2O2 was conducted by employment of both standard and counterpoise-corrected methods to calculate the geometric structures and vibrational frequencies at the MP2/6-31G(d), MP2/6-31 + G(d,p), MP2/6-311 + + G(d,p), B3LYP/6-31G(d), B3LYP/6-31 +G(d,p) and B3LYP/6-311 + +G(d,p) levels. In the H-bond N-H…O, the calculated blue shift of N-H stretching frequency is in the vicinity of 120 cm^-1 and this is indeed the largest theoretical estimate of a blue shift in the X-H…Y H-bond ever reported in the literature. From the natural bond orbital analysis, the red-shifted H-bond O-H…O can be explained on the basis of the dominant role of the hyperconjugation. For the blue-shifted H-bond N-H…O, the hyperconjugation was inhibited due to the existence of significant electron density redistribution effect, and the large blue shift of the N-H stretching frequency was prominently due to the rehybridization of spn N-H hybrid orbital.
基金
Project supported by the National Natural Science Foundation of China (No. G20477043) and Knowledge Creative Program of Chinese Academy of Sciences (No. KJCX2-SW-H08).