期刊文献+

一类新的集值ф-强增生型变分包含问题解的存在性与迭代逼近

Existence and iterative approximation of solution for a new class of variational inclusions with set-valued ф-strongly accretive type mappings
下载PDF
导出
摘要 研究了Banach空间中一类新的集值ф-强增生型变分包含问题,在实的自反光滑Banach空间中,证明了这类变分包含问题解的存在唯一性及其带误差的Ishikawa迭代程序的收敛性。此结果与曾六川教授最近的结果及主要定理的证明方法都是不同的。 A new class of variational inclusions with set-valued φ-strongly accretive type mappings in a Banach space X is studied. The existence and uniqueness of the solutions to this class of variational inclusions and convergence of the Ishikawa iteration process with errors for approximation solutions is presented. The results improve those obtained by Zeng Lu-chuan and others.
作者 张勇
出处 《成都信息工程学院学报》 2006年第3期449-453,共5页 Journal of Chengdu University of Information Technology
关键词 变分包含 Φ-强增生映象 正规对偶映象 带误差的Ishikawa迭代序列 variational inclusion set-valued φ-strongly accretive type mappings Ishikawa iterative sequence with errors
  • 相关文献

参考文献10

  • 1曾六川.一类φ-强增生型变分包含问题解的存在性与迭代逼近[J].Journal of Mathematical Research and Exposition,2004,24(2):297-304. 被引量:20
  • 2张石生.Banach空间中增生型变分包含解的Mann和Ishikawa迭代逼近[J].应用数学和力学,1999,20(6):551-558. 被引量:64
  • 3HUANG Nan-jing,CHOY J,et al.Ishikawa and Mann Iterative Processes with Errors for Set-valued Strongly Accretive and ()-Hemicontractive Mappings[J].Math Computer Modelling,2000,32:791 -801.
  • 4Petryshyn W V.A characterization of strictly convexity of Banach spaces and other uses of duality mapping[J].J Func Anal,1970,6:282-291.
  • 5Morales C H.Surjectivity theorems for multi-valued mappings of accretive type[J].Comment Math Univ Carolin,1985,26(2):397-413.
  • 6Nadler S B.Multi-valued contraction mappings[J].Pacific J Math,1969,30:475-488.
  • 7DING Xie-ping.Perturbed proximal point algorithms for generalized quasivariational inclusions[J].J Math Anal Appl,1997,210 (1):88-101.
  • 8DING Xie-ping.Generalized strongly nonlinear quasivariational inclusion[J].J Math Anal Appl,1993,173(2):577-587.
  • 9CHANG S S.Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,248:438-454.
  • 10NOOR M A.General variational inequalities[J].Appl Math Lett,1998,1(2):119-122.

二级参考文献11

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部