期刊文献+

蕴含扇图的可图序列的最小度和

The smallest degree sum that yields potentially fan graphical sequences
下载PDF
导出
摘要 设Fr是r个顶点的扇图,则对每一个n项可图序列π=(d1,d2,…,dn),蕴含扇图F5的可图序列的最小度和σ(F5,n)=4n-4,n≥5. Let Fr be the fan with r vertices. For every n-term graphic sequence π=(d1 ,d2,…dn), it is proved that the smallest degree sum that yields potentially fan graphic sequences is σ(F5, n)= 4n-4, n≥5.
作者 陈纲
出处 《西北师范大学学报(自然科学版)》 CAS 2006年第4期27-30,共4页 Journal of Northwest Normal University(Natural Science)
基金 宁夏大学青年教师科研启动基金资助项目(QN0505)
关键词 可图序列 度序列 蕴含可图 扇图 最小度和 graphic sequence degree sequence potentially graphic fan smallest degree sum
  • 相关文献

参考文献10

  • 1GOULD R J,JACOBSON M S,LEHEL J.Potentially G-graphic degree sequences[M]//ALAVI Y,LICK J,SCHWENK A J.Combinatorics Graph Theory and Algorithms.Kalamazoo Michigan:New Issues Press,1999,1:387-400.
  • 2ERD(O)S P,JACOBSON M S,LEHEL J.Graphs realizing the same degree sequences and their respective clique numbers[M]//ALAVI Y,CHARTRAND G,OELLERMANN O R.Graph Theory,Combinatorics and Applications.New York:John Wiley & Sons,1991:439-449.
  • 3LI Jiong-sheng,SONG Zi-Xia.An extremal problem on the potentially Pk graphic sequence[J].Discrete Math,2000,212:223-231.
  • 4LI Jiong-sheng,SONG Zi-xia.The smallest degree sum that yields potentially Pk-graphic sequences[J].J Graph Theory,1998,29:63-72.
  • 5LI Jiong-sheng,SONG Zi-xia,LUO Rong.The Erd(o)s-Jacobson-Lehel conjecture on potentially Pk-graphic sequences is true[J].Science in China (Series A),1998,41:510-520.
  • 6LAI Chun-hui.A note on potentially K4 -e graphical sequences[J].Australasian J of Combinatorics,2001,24:123-127.
  • 7KLEITMAN D J,WANG D L.Algorithm for constructing graphs and digraphs with given valences and factors[J].Discrete Math,1973,6:79-88.
  • 8LUO Rong.On potentially Ck-graphic sequences[J].Ars Combinatoria,2002,64:301-318.
  • 9陈纲,张淑萍.蕴含A1w可图和K5-2e可图的序列[M]//李耀堂,徐人平.数学及其应用.北京:原子能出版社,2005.289-294.
  • 10赖春晖.蕴含K_4-e可图序列的刻划[J].漳州师范学院学报(自然科学版),2002,15(3):53-59. 被引量:6

二级参考文献12

  • 1Lai Chunhui, A note on potentially K4-e graphical sequences[J], Australasian J. of Combinatorics 24(2001),123-127.
  • 2Li Jiong-Sheng and Song Zi-Xia, An extremal problem on the potentially Pk- graphic sequences[J], Discrete Math, (212)2000, 223-231.
  • 3Li Jiong-Sheng and Song Zi-Xia, The smallest degree sum that yields potentially Pk-graphical sequences[J], J.Graph Theory,29(1998), 63 -72.
  • 4Li Jiong-sheng and Song Zi-Xia, On the potentially Pk' raphic sequences[J], Discrete Math. 195(1999), 255-262.
  • 5Li Jiong-sheng, Song Zi-Xia and Luo Rong, The Erdos-Jacobson-Lehel conjecture on potentially Pk- graphic sequence is true[J]. Science in China(Series A), 41(5)(1998), 510-520.
  • 6Luo Rong, On potentially Ck -graphic sequences[J], Ars Combinatoria, 64(2002), 301- 318.
  • 7P. Turan, On an extremal problem in graph theory[J], Mat. Fiz. Lapok 48(1941), 436-452.
  • 8P. Erdos, On sequences of integers no one of which divides the product of two others and some related problems[J]. Izv. Naustno-Issl. Mat i Meh. Tomsk 2(1938), 74-82.
  • 9P. Erdos, M.S. Jacobson and J. Lehel. Graphs realizing the same degree sequences and their respective clique numbers, in Graph Theory, Combinatorics and Application, Vol. 1(Y. Alavi et al., eds.), John Wiley and Sons, Inc.,New York. 1991, 439-449.
  • 10R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequence, a lecture presented at Kamlamazoo Meeting in 1996.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部