期刊文献+

势垒的非对称性对隧穿几率的影响 被引量:4

The Effect of Asymmetric Barriers on Tunneling Probability
下载PDF
导出
摘要 在有效质量近似的框架下,应用传递矩阵理论研究了势垒的非对称性对单电子隧穿几率的影响.结果表明:隧穿过程的势垒的形状对隧穿几率影响很大,势垒的对称性破坏的越严重,在低能区域发生共振隧穿的可能性越小.这些可以为设计和制造更加优化的共振隧穿器件提供一定的理论指导. In this work, we calculated the tunneling probability of a single electron tunneling in a series of asymmetric barriers using the transfer matrix technique in the framework of effective mass approximation. Our results show that the potential barrier is more asymmetric and the resonant peak is less apparent. We hope our calculations can help to design optimum resonant- tunneling systems in the further experiment.
出处 《内蒙古民族大学学报(自然科学版)》 2006年第3期253-256,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 国家自然科学基金资助项目(10347004)
关键词 非对称势垒 隧穿几率 共振隧穿 Asymmetric barrier Tunneling probability Resonant - tunneling
  • 相关文献

参考文献14

  • 1L Esaki,R Tsu.Superlattice and negative differential conductivity in semiconductors[J].IBM J Res Dev,1970,14:61-65.
  • 2R Tsu,L Esaki.Tunneling in a finite superlattice[J].Appl Phys Lett,1973,22:562-564.
  • 3L L Chang,L Esaki,R Tsu.Resonant tunneling in semiconductor double barriers[J].Appl Phys Lett,1974,24:593-595.
  • 4A Chandra,L F Eastman.Quantum mechanical reflection at triangular "planar-doped" potential barriers for transistors[J].J Appl Phys,1982,53:9165-9169.
  • 5B Ricco,M Y Azbel.Physics of resonant tunneling:The one-dimensional double-barrier case[J].Phys Rev B,1984,29:1970-1981.
  • 6D N Christodoulides,et al.Analytical calculation of the quantum-Mechanical transmission coefficient for a triangular,planar-doped potential barrier[J].Solid-State Elec,1985,28:821-822.
  • 7M C Payne.Transfer Hamiltonian description of resonant tunnelling[J].J Phys C:Solid State Phys,1986,19:1145-1155.
  • 8J Heremans,D L Partin,P D Dresselhaus,et al.Tunneling through narrow-gap semiconductor barriers[J].Appl Phys Lett,1986,48:644-646.
  • 9W W Lui,Masao Fukuma.Exact solution of the Schrodinger equation across an arbitrary one-dimensional piecewise-linear potential barrier[J].J Appl Phys,1986,60:1555-1559.
  • 10T C L G Sollner,W D Goodhue,P E Tannenwald,et al.Resonant tunneling through quantum wells at frequencies up to 2.5 THz[J].Appl Phys Lett,1983,43:588-590.

同被引文献24

  • 1许刚.一维双势垒结构的谐振隧穿效应[J].重庆三峡学院学报,2006,22(3):101-103. 被引量:1
  • 2张红梅,刘德.传递矩阵方法与矩形势垒的量子隧穿[J].河北科技大学学报,2006,27(3):196-199. 被引量:10
  • 3刘宇,李志坚,周光辉.半导体量子阱共振隧穿特性分析[J].湖南师范大学自然科学学报,2006,29(4):31-34. 被引量:1
  • 4尤金D.Mathematica使用指南[M].北京:科学出版社,2002.
  • 5曾谨言.量子力学导论[M].北京:北京大学出版社,2009.
  • 6虞丽生.半导体异质结物理[M]北京:科学出版社,2006112-147.
  • 7XU Li-ping. The resonant tunneling in Si1-xGex/Si superlattices[J].Solid State Phenomena,2006.2721.
  • 8XU Li-ping,WEN Ting-dun,YANG Xiao-feng. Mesopiezoresistive effects in double-barrier resonant tunneling structures[J].Applied Physics Letters,2008.043-508.
  • 9Jogai B,WANG K L. Dependence of tnuneling current on structural variations of superiattice devices[J].Applied Physics Letters,1985,(02):167-168.
  • 10杜磊;庄弈琪.纳米电子学[M]北京:电子工业出版社,2004.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部