摘要
简述了自组织临界性理论的基本概念和多重分形原理方法,介绍了大尺度的非均匀沙堆模型实验,并表明其呈现出自组织临界性特征。并对沙堆系统的时空分形结构进行分析计算,确定了广义维数和奇异指数,得出多重分形特征谱。为研究沙堆的演化提出了多重分形动力模型。最后阐明了采用多重分形方法进行散粒体自组织临界性研究的意义。
The basic concept of self-organized criticality and principle of multifractal are briefly reviewed. The experiment of the macroscale sand-pile which is made of non-uniform sand-gravel shows the signature of self-organized criticality. We analysis the temporal and spatial fractal structure of the sand-pile system by multifractal approach, compute generalized dimension and strange exponent and educe the muhifractal spectrum.The muhifractal dynamical model of the sand-pile is put forward for analyzing the evolvement of sand-pile. The merit of muhifractal approach for researching selforganized criticality of granular mixtures theory and application are clarified.
出处
《科技通报》
2006年第4期519-523,552,共6页
Bulletin of Science and Technology
基金
国家自然科学基金(50478085)
国家自然科学基金西部重大研究计划(90202007)
关键词
自组织临界性
散粒体
多重分形
self-organized criticality
granular mixtures
multifractal