摘要
设G是一个简单无向图,若G不是完全图,G的韧度的一个变形定义为τ(G)=m in{S/(ω(G-S)-1)∶S V(G),ω(G-S)2}.否则,令τ(G)=∞.本文研究了参数τ(G)与分数k-因子的关系,给出了具有某些约束条件的图的分数k-因子存在的一些充分条件,并提出进一步可研究的问题.
Let G be a graph, a variation of toughness is defined as r(G) = min {|S|/(w(G-S)-1):S增包含V(G),w(G-S)≥2) if G is not complete, and r(G) = co if G is complete. In this paper, the relationship between the variation of toughness and fractional k -factors of graphs is discussed. Some sufficient conditions for graphs to have fractional k-factors with some constraints are given. A new problem is presented.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第6期255-260,共6页
Mathematics in Practice and Theory
基金
江苏科技大学青年科研基金(2004SL001J)
关键词
图
分数因子
韧度
graph
fractional factor
toughness