期刊文献+

一类非齐次复微分方程解的增长性

The Growth of Solutions of Some Non-homogeneous Differential Equations
原文传递
导出
摘要 研究了一类线性非齐次微分方程f(k)+ak-1f(k-1)+…+a1f-′(eQ(z)-a0)f=eQ(z)+F(z)解的增长性,其中aj(j=0,1,…,k-1)为常数,Q(z)为非常数多项式,F(z)为级小于deg Q的整函数. In this paper, we investigated the growth of solutions of f^(k)+ak-1f(k-1)+…+a1f′-(e^Q(z)-a0)f=e^Q(z)+F(z) where aj(j=0,1,….k-1) are constants, Q(z) is a non-constant polynomial, and F(z) is an entire function of order less than deg Q.
出处 《数学的实践与认识》 CSCD 北大核心 2006年第6期279-282,共4页 Mathematics in Practice and Theory
关键词 非齐次微分方程 整函数 指数函数 增长级 non-homogeneous differential equation entire function order
  • 相关文献

参考文献7

  • 1Hayman W.Meromorphic Function[M].Oxford:Clarendon Press,1964.
  • 2Laine I.Nevanlinna Theory and Complex Differential Equation[M].Berlin:Walter de Gruyter,1993.
  • 3Yang L Z.Solutions of a differential equation and its application[J].Kodai Math J,1999,22; 458-464.
  • 4王珺.关于一类非齐次微分方程解的增长性及应用[J].江西师范大学学报(自然科学版),2003,27(2):115-117. 被引量:3
  • 5Valiron G.Lectures on the General Theroy of Integral Functions[M].New York:Chelsea,1949.
  • 6Chen Z X.The zero,pole and order of meromorphic solutions of differential equations with meromorphic coefficients[J].Kodai Math J,1996,22:273-285.
  • 7Hayman W.The local qrowth of power series:a survey of the Wiman-Valiron method[J].Canad Math Bull,1974,17:317-358.

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部