期刊文献+

强激波阵面的非平衡结构研究 被引量:2

Research of nonequilibrium structure of strong shock front
下载PDF
导出
摘要 利用测量强激波波后N2^+第一负系(0,0)带和(1,2)带的辐射,对强激波后振动温度历程的测量过程进行了探索,并利用Langmuir探针技术,在低密度激波管中对强激波后电子数密度历程进行了测量。测量和计算结果进行了对比。结果表明:N2^+B^2∑u^+态的激发比振动能的激发更快;实验测得的振动温度有明显的周期性振荡;在激波速度7.65~7.85km/s、P1=1.33Pa、实验段内径0.8m下,实验有效时间只有约6.5μs,实验中的电子数密度不能达到峰值。在约10倍波前自由程的实验有效区域内,电子数密度的测量值与计算值吻合很好。 The vibrational temperature and electron number density behind strong shock waves were measured in shock tubes, and the results were compared with those of theoretical calculation. The vibrational temperature was derived by measuring the radiation of (0,0) and (1,2) bands of N2^+ first negative system. According to the experimental results, the electronic energy of N2^+ can be excited faster than its vibrational energy, and there are periodic fluctuations in the measured vibrational temperature. In the measurement of electron number densitiy behind strong shock waves (P1 = 1.33Pa, V, = 7.65 -7.85km/s) in a low density shock tube ( Ф0.8m), the effective test time was only about 6.5μs, so the electron number densitiy could not reach the peak in such a short time. The agreement between measurement and calculation are good during the effective test region, which is about 10 times freestream mean-free-molecular path.
出处 《实验流体力学》 EI CAS CSCD 北大核心 2006年第2期36-40,49,共6页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金资助项目(19889209)
关键词 强激波 激波管实验 振动温度 电子数密度 strong shock wave shock tube test vibrational temperature electron number densitiy
  • 相关文献

参考文献9

  • 1ALLEN R A. Noneqnilibrium shock front rotational, vibrational and electronic temperature measurements [R]. NASACR-205(also AVCO RR-186), 1964.
  • 2PARK C. Nonequilibrium hypersonic aerothermodynamics[M]. New York:John Wiley & Sons, 1990.
  • 3SHABMA S P, GILLESPIE W. Nonequilibrium and equilibrium shock front radiation measurements [R]. MAA 90-0139,1990.
  • 4LIN S C, NEAL R A, and FYFE W I. Rate of ionization behind shock waves in air, I experiment results[J]. Physice of Fluids, 1962, 5(12):1633.
  • 5LIN S C, Teare J D. Rate of ionization behind shock waves in air, Ⅱ theoretical interpretation [J]. Physice of Fluids,1963, 6(10): 355.
  • 6WILSON J F. Ionization rate of air behind high speed shock waves[J]. Physice of Fluids, 1966, 9(10):1913.
  • 7PARK C. Review of chemical-kinetic problems of future NASA missions, h earth entries[J]. J. Thennophysics and Heat Transfer, 1993, 7(3):383.
  • 8GAYDON A G, HURLE I B. The shock tube in high-temperature chemical physics [M]. London: Chapman and Hall Ltd., 1963.
  • 9SONIN AIN A. Free-molecule Langmuir probe and its use in flowfield studies[J]. AIAA J., 1966, 4(9): 1588.

同被引文献26

  • 1俞鸿儒,赵伟,袁生学.氢氧爆轰驱动激波风洞的性能[J].气动实验与测量控制,1993,7(3):38-42. 被引量:16
  • 2MATSUMOTO Y, AMANO T, KATO T N, et al. Sto- chastic electron acceleration during spontaneous turbulentreconnection in a strong shock wave[J]. Science, 2015 347(6225) : 974-978.
  • 3KJELLANDER M, TILLMARK N, APAZIDIS N Shock dynamics of strong imploding cylindrical and spheri cal shock waves with real gas effects[J]. Physics of Flu ids, 2010, 2201): 116102-1 7.
  • 4SRIRAM R, JAGADEESH G. Correlation for length of impinging shock induced large separation bubble at hyper sonicspeed[J]. AIAAJournal, 2015, 53(9): 2771-2775.
  • 5RAGA A C, CANTO J, RODRIGUEZ L F, et al. An an- alytic model for the strong-/weak-shock transition in a spherical blast wave[J]. Monthly Notices of the Royal Astronomical Society, 2012, 424(4): 2522-2527.
  • 6ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface[J]. Journal of Fluid Mechanics, 2014, 757(2): 800-816.
  • 7BOND C, HILL D J, MEIRONAND D 1, et ai. Shock fo- cusing in a planar convergent geometry: Experiment and simulation[J]. Journal of Fluid Mechanics, 2009, 641 (12): 297- 333.
  • 8WANG C X, GRUNENFELDER L K, PATWARDHAN R, et al. Investigation of shock wave focusing in water in a logarithmic spiral duct, Part 2: Strong coupling[J]. Ocean Engineering, 2015, 102: 185-196.
  • 9DIMOTAKIS P E, SAMTANEY R. Planar shock cylin- drical focusing by a perfect-gas lens[J]. Physics of Fluids, 2006, 18(3): 031705-1-4.
  • 10HOSSEINI S H R, TAKAYAMA K. Experimental study of toroidal shock wave focusing in a compact vertical annu- lar diaphragmless shock tube[J]. Shock Waves, 2010, 20(1) : 1-7.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部