期刊文献+

求解快速振荡系数的抛物型方程的新方法

New Method for Parabolic Equations with Rapidly Oscillating Coefficients
下载PDF
导出
摘要 提出了小波变换数值均匀化方法,并将其用于求解快速振荡系数的抛物型方程。小波变换数值均匀化方法基于小波的多分辨分析,在细尺度空间上得到原方程的半离散方程,然后利用小波变换得到粗尺度空间的数值均匀化方程,即可在粗尺度上求解原方程,有效地减小了计算量。计算结果表明:小波数值均匀化方法与精细剖分的有限体积法相比较,既大大地节省了计算时间又获得了较好的精度。 Wavelet transform numerical homogenization is proposed for parabolic equations with rapidly oscillating coefficients.Based on MRA,muhiscale numerical homogenization obtains semi-discrete equations in fine scale space,and transforms to numerical homogenization equations in coarse scale space by wavelet transform.Then wavelet transform numerical homogenization gets numerical results at a low cost for solving the original equation in coarse scale space. The numerical results show that the proposed method is better than the finite volume method,not only in calculation but also in accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第19期41-43,114,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:10590353)
关键词 小波 均匀化 多分辨分析 有限体积法 wavelet, homogenization,muhiresolution analysis, finite volume method
  • 相关文献

参考文献8

  • 1薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,35(7):7-13. 被引量:66
  • 2张勇,闻德荪,舒光冀,何德坪,陶同康,诸鸿申.铝液在多孔介质中渗流过程的模拟试验研究[J].东南大学学报(自然科学版),1993,23(5):78-85. 被引量:13
  • 3Thomas Y H,Wu X H.A multiscale finite element method for elliptic problems in composite materials and porous media[J].Journal of Computional Physics,1997; 134(1):169~189
  • 4Thomas Y H,Wu X H,Cai Z Q.Convergence of a multiscale finite element method for elliptic problems with rapidly oscillation coeffients[J].Mathematics of Computation,1999;68(227):913~943
  • 5Jenny P,Lee S H.Multiscale finite-volume method for elliptic problems in subsurface flow simulation[J].Journal of Computational Physics,2003;187(1):47~67
  • 6Alain B,Jacques-Louis L,George P.Asymptotic analysis for periodic structures[M].North-Holland:Ameterdam,1978:11~20
  • 7Mihai D,Bjorn E.Wavelet-based numerical homogenization[J].SIAM Journal on Numerical Analysis,1998; 35 (2):540~559
  • 8Mehraeen S,Juin-shyan C.Wavelet-based multiscale projection method in homogenization of heterogeneous media[J].Finite Elements in Analysis and Design,2004 ;40(12):1665~1679

二级参考文献15

  • 1[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189.
  • 2[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943.
  • 3[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121.
  • 4[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166.
  • 5[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800.
  • 6[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137.
  • 7[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42.
  • 8[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536.
  • 9[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951.
  • 10闻德荪,工程流体力学,1990年

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部